{"title":"具有奇异数据的某些椭圆问题解的 Marcinkiewicz 估计数","authors":"Lucio Boccardo, Luigi Orsina","doi":"10.1007/s11118-024-10140-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper we prove regularity result for solutions of the boundary value problem </p><span>$$ \\left\\{ \\begin{array}{cl} -{{\\,\\textrm{div}\\,}}(M(x)\\,\\nabla u) + u = -{{\\,\\textrm{div}\\,}}(u\\,E(x)) + f(x)\\,, &{} \\text{ in }\\,\\, \\Omega , \\\\ u = 0\\,, &{} \\text{ on }\\,\\,\\partial \\Omega , \\end{array} \\right. $$</span><p>with the vector field <i>E</i>(<i>x</i>) and the function <i>f</i>(<i>x</i>) belonging to some Marcinkiewicz spaces.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"44 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Marcinkiewicz Estimates for Solutions of Some Elliptic Problems with Singular Data\",\"authors\":\"Lucio Boccardo, Luigi Orsina\",\"doi\":\"10.1007/s11118-024-10140-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we prove regularity result for solutions of the boundary value problem </p><span>$$ \\\\left\\\\{ \\\\begin{array}{cl} -{{\\\\,\\\\textrm{div}\\\\,}}(M(x)\\\\,\\\\nabla u) + u = -{{\\\\,\\\\textrm{div}\\\\,}}(u\\\\,E(x)) + f(x)\\\\,, &{} \\\\text{ in }\\\\,\\\\, \\\\Omega , \\\\\\\\ u = 0\\\\,, &{} \\\\text{ on }\\\\,\\\\,\\\\partial \\\\Omega , \\\\end{array} \\\\right. $$</span><p>with the vector field <i>E</i>(<i>x</i>) and the function <i>f</i>(<i>x</i>) belonging to some Marcinkiewicz spaces.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10140-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10140-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
本文证明了边界值问题解的正则性结果 $$ \left\{ \begin{array}{cl} -{\textrm{div}\,}}(M(x)\,\nabla u) + u = -{\textrm{div}\,}}(u\,E(x))+ f(x)\,, &{}\u = 0\,, &{}\text{ on }\,\partial\Omega , \end{array}\是的$$with the vector field E(x) and the function f(x) belonging to some Marcinkiewicz spaces.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.