{"title":"有临界指数的对数椭圆方程的符号变化解法","authors":"Tianhao Liu, Wenming Zou","doi":"10.1007/s00229-024-01535-5","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we consider the logarithmic elliptic equations with critical exponent </p><span>$$\\begin{aligned} \\left\\{ \\begin{array}{ll} -\\Delta u=\\lambda u+ |u|^{2^*-2}u+\\theta u\\log u^2, \\\\ u \\in H_0^1(\\Omega ), \\quad \\Omega \\subset {{\\mathbb {R}}}^N. \\end{array}\\right. \\end{aligned}$$</span><p>Here, the parameters <span>\\(N\\ge 6\\)</span>, <span>\\(\\lambda \\in {{\\mathbb {R}}}\\)</span>, <span>\\(\\theta >0\\)</span> and <span>\\( 2^*=\\frac{2N}{N-2} \\)</span> is the Sobolev critical exponent. We prove the existence of a sign-changing solution with exactly two nodal domain for an arbitrary smooth bounded domain <span>\\(\\Omega \\subset {\\mathbb {R}}^{N}\\)</span>. When <span>\\(\\Omega =B_R(0)\\)</span> is a ball, we also construct infinitely many radial sign-changing solutions with alternating signs and prescribed nodal characteristic.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sign-changing solution for logarithmic elliptic equations with critical exponent\",\"authors\":\"Tianhao Liu, Wenming Zou\",\"doi\":\"10.1007/s00229-024-01535-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we consider the logarithmic elliptic equations with critical exponent </p><span>$$\\\\begin{aligned} \\\\left\\\\{ \\\\begin{array}{ll} -\\\\Delta u=\\\\lambda u+ |u|^{2^*-2}u+\\\\theta u\\\\log u^2, \\\\\\\\ u \\\\in H_0^1(\\\\Omega ), \\\\quad \\\\Omega \\\\subset {{\\\\mathbb {R}}}^N. \\\\end{array}\\\\right. \\\\end{aligned}$$</span><p>Here, the parameters <span>\\\\(N\\\\ge 6\\\\)</span>, <span>\\\\(\\\\lambda \\\\in {{\\\\mathbb {R}}}\\\\)</span>, <span>\\\\(\\\\theta >0\\\\)</span> and <span>\\\\( 2^*=\\\\frac{2N}{N-2} \\\\)</span> is the Sobolev critical exponent. We prove the existence of a sign-changing solution with exactly two nodal domain for an arbitrary smooth bounded domain <span>\\\\(\\\\Omega \\\\subset {\\\\mathbb {R}}^{N}\\\\)</span>. When <span>\\\\(\\\\Omega =B_R(0)\\\\)</span> is a ball, we also construct infinitely many radial sign-changing solutions with alternating signs and prescribed nodal characteristic.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01535-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01535-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Here, the parameters \(N\ge 6\), \(\lambda \in {{\mathbb {R}}}\), \(\theta >0\) and \( 2^*=\frac{2N}{N-2} \) is the Sobolev critical exponent. We prove the existence of a sign-changing solution with exactly two nodal domain for an arbitrary smooth bounded domain \(\Omega \subset {\mathbb {R}}^{N}\). When \(\Omega =B_R(0)\) is a ball, we also construct infinitely many radial sign-changing solutions with alternating signs and prescribed nodal characteristic.