哈代空间和伯格曼空间上的复对称托普利兹算子

IF 1.2 3区 数学 Q1 MATHEMATICS
Xiaohe Hu, Cui Wang, Zhiyuan Xu
{"title":"哈代空间和伯格曼空间上的复对称托普利兹算子","authors":"Xiaohe Hu,&nbsp;Cui Wang,&nbsp;Zhiyuan Xu","doi":"10.1007/s43034-024-00352-x","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we first completely characterize the complex symmetric Toeplitz operators <span>\\(T_\\varphi \\)</span> on the Hardy spaces <span>\\(H^2({\\mathbb {D}})\\)</span> with conjugations <span>\\({\\mathcal {C}}_p^{i,j}\\)</span> and <span>\\({\\mathcal {C}}_n\\)</span>. Next, we give a method to determine the coefficients of <span>\\(\\varphi (z)\\)</span> when <span>\\(T_\\varphi \\)</span> is complex symmetric on <span>\\(H^2({\\mathbb {D}})\\)</span> with the conjugation <span>\\({\\mathcal {C}}_\\sigma \\)</span>, which partially solves a problem raised by [2]. Finally, we consider the complex symmetric Toeplitz operators <span>\\(T_\\varphi \\)</span> on the weighted Bergman spaces <span>\\(A^2({\\mathbb {B}}_{n})\\)</span> and the pluriharmonic Bergman spaces <span>\\(b^2({\\mathbb {B}}_{n})\\)</span> with conjugations <span>\\({\\mathcal {C}}_V\\)</span>, where <i>V</i> is a symmetric permutation matrix.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex symmetric Toeplitz operators on the Hardy spaces and Bergman spaces\",\"authors\":\"Xiaohe Hu,&nbsp;Cui Wang,&nbsp;Zhiyuan Xu\",\"doi\":\"10.1007/s43034-024-00352-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In this paper, we first completely characterize the complex symmetric Toeplitz operators <span>\\\\(T_\\\\varphi \\\\)</span> on the Hardy spaces <span>\\\\(H^2({\\\\mathbb {D}})\\\\)</span> with conjugations <span>\\\\({\\\\mathcal {C}}_p^{i,j}\\\\)</span> and <span>\\\\({\\\\mathcal {C}}_n\\\\)</span>. Next, we give a method to determine the coefficients of <span>\\\\(\\\\varphi (z)\\\\)</span> when <span>\\\\(T_\\\\varphi \\\\)</span> is complex symmetric on <span>\\\\(H^2({\\\\mathbb {D}})\\\\)</span> with the conjugation <span>\\\\({\\\\mathcal {C}}_\\\\sigma \\\\)</span>, which partially solves a problem raised by [2]. Finally, we consider the complex symmetric Toeplitz operators <span>\\\\(T_\\\\varphi \\\\)</span> on the weighted Bergman spaces <span>\\\\(A^2({\\\\mathbb {B}}_{n})\\\\)</span> and the pluriharmonic Bergman spaces <span>\\\\(b^2({\\\\mathbb {B}}_{n})\\\\)</span> with conjugations <span>\\\\({\\\\mathcal {C}}_V\\\\)</span>, where <i>V</i> is a symmetric permutation matrix.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00352-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00352-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们首先完整地描述了哈代空间 \(H^2({\mathbb {D}})\ 上具有共轭 \({\mathcal {C}}_p^{i,j}\) 和 \({\mathcal {C}}_n\) 的复对称托普利兹算子 \(T_\varphi)。接下来,我们给出了当 \(T_\varphi \) 在 \(H^2({\mathbb {D}})\) 上是复对称时确定 \(\varphi (z)\) 的系数的方法,该方法部分解决了[2]提出的问题。最后,我们考虑了加权伯格曼空间(A^2({/mathbb {B}_{n}))和多谐伯格曼空间(b^2({/mathbb {B}_{n}))上的复对称托普利兹算子(T_/varphi),其中 V 是对称置换矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Complex symmetric Toeplitz operators on the Hardy spaces and Bergman spaces

In this paper, we first completely characterize the complex symmetric Toeplitz operators \(T_\varphi \) on the Hardy spaces \(H^2({\mathbb {D}})\) with conjugations \({\mathcal {C}}_p^{i,j}\) and \({\mathcal {C}}_n\). Next, we give a method to determine the coefficients of \(\varphi (z)\) when \(T_\varphi \) is complex symmetric on \(H^2({\mathbb {D}})\) with the conjugation \({\mathcal {C}}_\sigma \), which partially solves a problem raised by [2]. Finally, we consider the complex symmetric Toeplitz operators \(T_\varphi \) on the weighted Bergman spaces \(A^2({\mathbb {B}}_{n})\) and the pluriharmonic Bergman spaces \(b^2({\mathbb {B}}_{n})\) with conjugations \({\mathcal {C}}_V\), where V is a symmetric permutation matrix.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信