平环面频谱的定量等分布和局部统计

Elon Lindenstrauss, Amir Mohammadi, Zhiren Wang
{"title":"平环面频谱的定量等分布和局部统计","authors":"Elon Lindenstrauss, Amir Mohammadi, Zhiren Wang","doi":"10.1007/s11854-023-0332-x","DOIUrl":null,"url":null,"abstract":"<p>We show that a pair correlation function for the spectrum of a flat 2-dimensional torus satisfying an explicit Diophantine condition agrees with those of a Poisson process with a polynomial error rate.</p><p>The proof is based on a quantitative equidistribution theorem and tools from geometry of numbers.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantitative equidistribution and the local statistics of the spectrum of a flat torus\",\"authors\":\"Elon Lindenstrauss, Amir Mohammadi, Zhiren Wang\",\"doi\":\"10.1007/s11854-023-0332-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that a pair correlation function for the spectrum of a flat 2-dimensional torus satisfying an explicit Diophantine condition agrees with those of a Poisson process with a polynomial error rate.</p><p>The proof is based on a quantitative equidistribution theorem and tools from geometry of numbers.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0332-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0332-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了平面二维环的谱的一对相关函数满足一个明确的 Diophantine 条件,与具有多项式误差率的泊松过程的相关函数一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantitative equidistribution and the local statistics of the spectrum of a flat torus

We show that a pair correlation function for the spectrum of a flat 2-dimensional torus satisfying an explicit Diophantine condition agrees with those of a Poisson process with a polynomial error rate.

The proof is based on a quantitative equidistribution theorem and tools from geometry of numbers.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信