在量子信息系统和天体物理学中使用热电单光子探测器的前景

IF 1 Q4 OPTICS
A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan
{"title":"在量子信息系统和天体物理学中使用热电单光子探测器的前景","authors":"A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan","doi":"10.3103/s1060992x23070111","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In this paper, we propose the design of detection pixels for single-photon detectors, consisting of absorber and heat sink (Bi-2223), thermoelectric sensors (CeB<sub>6</sub>), and an antireflection layer (SiO<sub>2</sub>) located on a dielectric substrate (Al<sub>2</sub>O<sub>3</sub>). We employ modeling and simulation to study the heat propagation processes in multi-layer detection pixels following the absorption of photons with energy ranging from 0.8 eV to 1 keV. Calculations are performed using the heat transfer equation within a limited volume, employing the three-dimensional matrix method. We calculate the temperature temporal variation in different areas of the detection pixels, as well as the voltage generated on the sensor, for various thicknesses and surfaces of the detection pixel layers. We determine the maximum signal value, time at which the maximum signal is reached, signal decay time, and the detector’s count rate. We derive equations for Phonon and Johnson noise in the three-layer detection pixel and calculate the total noise. Based on the data obtained, we propose ways to improve the signal-to-noise ratio.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":"29 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics\",\"authors\":\"A. A. Kuzanyan, A. S. Kuzanyan, V. R. Nikoghosyan\",\"doi\":\"10.3103/s1060992x23070111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In this paper, we propose the design of detection pixels for single-photon detectors, consisting of absorber and heat sink (Bi-2223), thermoelectric sensors (CeB<sub>6</sub>), and an antireflection layer (SiO<sub>2</sub>) located on a dielectric substrate (Al<sub>2</sub>O<sub>3</sub>). We employ modeling and simulation to study the heat propagation processes in multi-layer detection pixels following the absorption of photons with energy ranging from 0.8 eV to 1 keV. Calculations are performed using the heat transfer equation within a limited volume, employing the three-dimensional matrix method. We calculate the temperature temporal variation in different areas of the detection pixels, as well as the voltage generated on the sensor, for various thicknesses and surfaces of the detection pixel layers. We determine the maximum signal value, time at which the maximum signal is reached, signal decay time, and the detector’s count rate. We derive equations for Phonon and Johnson noise in the three-layer detection pixel and calculate the total noise. Based on the data obtained, we propose ways to improve the signal-to-noise ratio.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1060992x23070111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1060992x23070111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在本文中,我们提出了单光子探测器探测像素的设计方案,它由位于电介质基板(Al2O3)上的吸收器和散热器(Bi-2223)、热电传感器(CeB6)以及抗反射层(SiO2)组成。我们利用建模和仿真技术研究了多层探测像素在吸收能量范围为 0.8 eV 至 1 keV 的光子后的热传播过程。计算采用三维矩阵法,利用有限体积内的传热方程进行。我们计算了检测像素层不同厚度和表面的不同区域的温度时间变化,以及传感器上产生的电压。我们确定了最大信号值、达到最大信号值的时间、信号衰减时间和探测器的计数率。我们推导出三层探测像素中的 Phonon 和 Johnson 噪声方程,并计算出总噪声。根据获得的数据,我们提出了提高信噪比的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics

Prospects for Using Thermoelectric Single-Photon Detectors in Quantum Information Systems and Astrophysics

Abstract

In this paper, we propose the design of detection pixels for single-photon detectors, consisting of absorber and heat sink (Bi-2223), thermoelectric sensors (CeB6), and an antireflection layer (SiO2) located on a dielectric substrate (Al2O3). We employ modeling and simulation to study the heat propagation processes in multi-layer detection pixels following the absorption of photons with energy ranging from 0.8 eV to 1 keV. Calculations are performed using the heat transfer equation within a limited volume, employing the three-dimensional matrix method. We calculate the temperature temporal variation in different areas of the detection pixels, as well as the voltage generated on the sensor, for various thicknesses and surfaces of the detection pixel layers. We determine the maximum signal value, time at which the maximum signal is reached, signal decay time, and the detector’s count rate. We derive equations for Phonon and Johnson noise in the three-layer detection pixel and calculate the total noise. Based on the data obtained, we propose ways to improve the signal-to-noise ratio.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信