随机乘法函数的中心极限定理

Kannan Soundararajan, Max Wenqiang Xu
{"title":"随机乘法函数的中心极限定理","authors":"Kannan Soundararajan, Max Wenqiang Xu","doi":"10.1007/s11854-023-0331-y","DOIUrl":null,"url":null,"abstract":"<p>A Steinhaus random multiplicative function <i>f</i> is a completely multiplicative function obtained by setting its values on primes <i>f</i>(<i>p</i>) to be independent random variables distributed uniformly on the unit circle. Recent work of Harper shows that <span>\\(\\sum\\nolimits_{n \\le N} {f(n)} \\)</span> exhibits “more than square-root cancellation,” and in particular <span>\\({1 \\over {\\sqrt N }}\\sum\\nolimits_{n \\le N} {f(n)} \\)</span> does not have a (complex) Gaussian distribution. This paper studies <span>\\(\\sum\\nolimits_{n \\in {\\cal A}} {f(n)} \\)</span>, where <span>\\({\\cal A}\\)</span> is a subset of the integers in [1, <i>N</i>], and produces several new examples of sets <span>\\({\\cal A}\\)</span> where a central limit theorem can be established. We also consider more general sums such as <span>\\(\\sum\\nolimits_{n \\le N} {f(n){e^{2\\pi in\\theta }}} \\)</span>, where we show that a central limit theorem holds for any irrational <i>θ</i> that does not have extremely good Diophantine approximations.</p>","PeriodicalId":502135,"journal":{"name":"Journal d'Analyse Mathématique","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Central limit theorems for random multiplicative functions\",\"authors\":\"Kannan Soundararajan, Max Wenqiang Xu\",\"doi\":\"10.1007/s11854-023-0331-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A Steinhaus random multiplicative function <i>f</i> is a completely multiplicative function obtained by setting its values on primes <i>f</i>(<i>p</i>) to be independent random variables distributed uniformly on the unit circle. Recent work of Harper shows that <span>\\\\(\\\\sum\\\\nolimits_{n \\\\le N} {f(n)} \\\\)</span> exhibits “more than square-root cancellation,” and in particular <span>\\\\({1 \\\\over {\\\\sqrt N }}\\\\sum\\\\nolimits_{n \\\\le N} {f(n)} \\\\)</span> does not have a (complex) Gaussian distribution. This paper studies <span>\\\\(\\\\sum\\\\nolimits_{n \\\\in {\\\\cal A}} {f(n)} \\\\)</span>, where <span>\\\\({\\\\cal A}\\\\)</span> is a subset of the integers in [1, <i>N</i>], and produces several new examples of sets <span>\\\\({\\\\cal A}\\\\)</span> where a central limit theorem can be established. We also consider more general sums such as <span>\\\\(\\\\sum\\\\nolimits_{n \\\\le N} {f(n){e^{2\\\\pi in\\\\theta }}} \\\\)</span>, where we show that a central limit theorem holds for any irrational <i>θ</i> that does not have extremely good Diophantine approximations.</p>\",\"PeriodicalId\":502135,\"journal\":{\"name\":\"Journal d'Analyse Mathématique\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal d'Analyse Mathématique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11854-023-0331-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal d'Analyse Mathématique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11854-023-0331-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

斯坦豪斯随机乘法函数 f 是一个完全乘法函数,它是通过将其在素数 f(p) 上的值设置为均匀分布在单位圆上的独立随机变量而得到的。哈珀(Harper)的最新研究表明,\(\sum\nolimits_{n \le N} {f(n)}\)表现出 "超过平方根的取消",尤其是\({1 over {\sqrt N }}\sum\nolimits_{n \le N} {f(n)}\)不具有(复)高斯分布。本文研究了 ( (sum\nolimits_{n \in {cal A}}{其中 \({\cal A}\) 是[1,N]中整数的子集,并产生了几个可以建立中心极限定理的集合 \({\cal A}\) 的新例子。我们还考虑了更一般的和,如(sum\nolimits_{n \le N} {f(n){e^{2\pi in\theta }}} )。\),在这里我们证明了中心极限定理对于任何无理数θ都是成立的,而这些无理数θ并没有极好的戴奥芬汀近似值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Central limit theorems for random multiplicative functions

A Steinhaus random multiplicative function f is a completely multiplicative function obtained by setting its values on primes f(p) to be independent random variables distributed uniformly on the unit circle. Recent work of Harper shows that \(\sum\nolimits_{n \le N} {f(n)} \) exhibits “more than square-root cancellation,” and in particular \({1 \over {\sqrt N }}\sum\nolimits_{n \le N} {f(n)} \) does not have a (complex) Gaussian distribution. This paper studies \(\sum\nolimits_{n \in {\cal A}} {f(n)} \), where \({\cal A}\) is a subset of the integers in [1, N], and produces several new examples of sets \({\cal A}\) where a central limit theorem can be established. We also consider more general sums such as \(\sum\nolimits_{n \le N} {f(n){e^{2\pi in\theta }}} \), where we show that a central limit theorem holds for any irrational θ that does not have extremely good Diophantine approximations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信