铁电晶体表面悬浮层中的纳米粒子光电捕获与操纵的协同作用

IF 1 Q4 OPTICS
Lusine Tsarukyan, Anahit Badalyan, Rafael Drampyan
{"title":"铁电晶体表面悬浮层中的纳米粒子光电捕获与操纵的协同作用","authors":"Lusine Tsarukyan, Anahit Badalyan, Rafael Drampyan","doi":"10.3103/s1060992x23070202","DOIUrl":null,"url":null,"abstract":"<p>We experimentally demonstrated that dielectrophoretic (DEP) forces of alternating photovoltaic fields generated near the surface of a photorefractive Fe-doped lithium niobate crystal by an optical Bessel beam with concentric ring structure and 532 nm wavelength exert the structuring of pure glycerin layer on the crystal surface and formation of stationary fluid concentric ring pattern. Taking into account this effect, the manipulation and trapping of the Ag nanoparticles suspended in the thin glycerin layer on the crystal surface with Bessel beam-induced photovoltaic field pattern have been studied. The formation of the clusters of Ag nanoparticles is observed. The localization of the Ag particles on the extremes of fluid lattice rings is detected. The trapping process can be described by a two-stage scenario. In the early stage, the stratification of glycerin thin layer under positive DEP force and localization of the fluid in the maxima of the photovoltaic field take place, thus forming the concentric ring fluid channels on the crystal surface. The flow of viscose glycerin in the radial directions also carries along the Ag nanoparticles. In the advanced stage, the repulsive DEP forces lead to the trapping of Ag particles on the crystal surface at the borderlines of fluid lattice rings. The generated photovoltaic space charge fields are long-living and, as a consequence, the formed patterns remain stable for a long time due to the high resistance of the crystal. The photovoltaic tweezers operating in an autonomous regime and allowing the trapping, manipulation and separation of micro-/nanoparticles are promising for photonics, integrated optics, nanoelectronics and biotechnology.</p>","PeriodicalId":721,"journal":{"name":"Optical Memory and Neural Networks","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synergy of Nanoparticles Photovoltaic Trapping and Manipulation from Suspension Layer on Ferroelectric Crystal Surface\",\"authors\":\"Lusine Tsarukyan, Anahit Badalyan, Rafael Drampyan\",\"doi\":\"10.3103/s1060992x23070202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We experimentally demonstrated that dielectrophoretic (DEP) forces of alternating photovoltaic fields generated near the surface of a photorefractive Fe-doped lithium niobate crystal by an optical Bessel beam with concentric ring structure and 532 nm wavelength exert the structuring of pure glycerin layer on the crystal surface and formation of stationary fluid concentric ring pattern. Taking into account this effect, the manipulation and trapping of the Ag nanoparticles suspended in the thin glycerin layer on the crystal surface with Bessel beam-induced photovoltaic field pattern have been studied. The formation of the clusters of Ag nanoparticles is observed. The localization of the Ag particles on the extremes of fluid lattice rings is detected. The trapping process can be described by a two-stage scenario. In the early stage, the stratification of glycerin thin layer under positive DEP force and localization of the fluid in the maxima of the photovoltaic field take place, thus forming the concentric ring fluid channels on the crystal surface. The flow of viscose glycerin in the radial directions also carries along the Ag nanoparticles. In the advanced stage, the repulsive DEP forces lead to the trapping of Ag particles on the crystal surface at the borderlines of fluid lattice rings. The generated photovoltaic space charge fields are long-living and, as a consequence, the formed patterns remain stable for a long time due to the high resistance of the crystal. The photovoltaic tweezers operating in an autonomous regime and allowing the trapping, manipulation and separation of micro-/nanoparticles are promising for photonics, integrated optics, nanoelectronics and biotechnology.</p>\",\"PeriodicalId\":721,\"journal\":{\"name\":\"Optical Memory and Neural Networks\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-01-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Memory and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3103/s1060992x23070202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Memory and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3103/s1060992x23070202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

我们通过实验证明,具有同心环结构、波长为 532 nm 的贝塞尔光束在光折射掺杂铁的铌酸锂晶体表面附近产生的交变光电场的介电泳(DEP)力可使晶体表面的纯甘油层结构化并形成静止的流体同心环图案。考虑到这一效应,研究了悬浮在晶体表面薄甘油层中的银纳米粒子在贝塞尔光束诱导的光电场模式下的操纵和捕获。观察到了银纳米粒子簇的形成。在流体晶格环的两端检测到了银粒子的定位。捕集过程可分为两个阶段。在早期阶段,甘油薄层在正 DEP 力的作用下分层,流体定位在光生伏打场的最大值处,从而在晶体表面形成同心环流体通道。粘甘油在径向的流动也携带着银纳米粒子。在高级阶段,DEP 排斥力导致 Ag 粒子被困在晶格环边界的晶体表面上。所产生的光伏空间电荷场是长期存在的,因此,由于晶体的高电阻,所形成的图案可以保持长期稳定。这种光电镊子可以自主运行,并允许捕获、操纵和分离微/纳米粒子,在光子学、集成光学、纳米电子学和生物技术领域大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synergy of Nanoparticles Photovoltaic Trapping and Manipulation from Suspension Layer on Ferroelectric Crystal Surface

Synergy of Nanoparticles Photovoltaic Trapping and Manipulation from Suspension Layer on Ferroelectric Crystal Surface

We experimentally demonstrated that dielectrophoretic (DEP) forces of alternating photovoltaic fields generated near the surface of a photorefractive Fe-doped lithium niobate crystal by an optical Bessel beam with concentric ring structure and 532 nm wavelength exert the structuring of pure glycerin layer on the crystal surface and formation of stationary fluid concentric ring pattern. Taking into account this effect, the manipulation and trapping of the Ag nanoparticles suspended in the thin glycerin layer on the crystal surface with Bessel beam-induced photovoltaic field pattern have been studied. The formation of the clusters of Ag nanoparticles is observed. The localization of the Ag particles on the extremes of fluid lattice rings is detected. The trapping process can be described by a two-stage scenario. In the early stage, the stratification of glycerin thin layer under positive DEP force and localization of the fluid in the maxima of the photovoltaic field take place, thus forming the concentric ring fluid channels on the crystal surface. The flow of viscose glycerin in the radial directions also carries along the Ag nanoparticles. In the advanced stage, the repulsive DEP forces lead to the trapping of Ag particles on the crystal surface at the borderlines of fluid lattice rings. The generated photovoltaic space charge fields are long-living and, as a consequence, the formed patterns remain stable for a long time due to the high resistance of the crystal. The photovoltaic tweezers operating in an autonomous regime and allowing the trapping, manipulation and separation of micro-/nanoparticles are promising for photonics, integrated optics, nanoelectronics and biotechnology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
25
期刊介绍: The journal covers a wide range of issues in information optics such as optical memory, mechanisms for optical data recording and processing, photosensitive materials, optical, optoelectronic and holographic nanostructures, and many other related topics. Papers on memory systems using holographic and biological structures and concepts of brain operation are also included. The journal pays particular attention to research in the field of neural net systems that may lead to a new generation of computional technologies by endowing them with intelligence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信