基于注意力机制网络双残差的乙烯等离子图像识别技术

IF 2.1 4区 综合性期刊 Q2 MULTIDISCIPLINARY SCIENCES
Baoxia Li, Wenzhuo Chen, Shaohuang Bian, A Lusi, Xiaojiang Tang, Yang Liu, Junwei Guo, Dan Zhang, Cheng Yang, Feng Huang
{"title":"基于注意力机制网络双残差的乙烯等离子图像识别技术","authors":"Baoxia Li, Wenzhuo Chen, Shaohuang Bian, A Lusi, Xiaojiang Tang, Yang Liu, Junwei Guo, Dan Zhang, Cheng Yang, Feng Huang","doi":"10.1007/s12210-024-01241-0","DOIUrl":null,"url":null,"abstract":"<p>Ethylene discharge can be used for particle formation in complex plasma, industrial plasma process, environmental protection, and agricultural process. Ethylene discharge characteristics strongly depends on discharge parameters. Accurate and efficient recognition of discharge parameters is significant for the diagnosis of complex plasma, and industrial and agricultural practical applications. In this paper, we proposed a deep convolution neural network based on dual residual with attention mechanism (DRAM) to recognize discharge parameter through the image fusion of discharge glow and particles during ethylene discharge. It shows that the proposed model can effectively recognize the ethylene discharge parameters with all the four evaluation indicators of accuracy, precision, recall, and <i>F</i>1_Score of higher than 98.8%, respectively. Compared with other six classical recognition models, our model exhibits the best recognition performance. This method provides an effective technical support for the diagnosis and practical application of ethylene plasma.</p><h3 data-test=\"abstract-sub-heading\">Graphic abstract</h3>\n","PeriodicalId":54501,"journal":{"name":"Rendiconti Lincei-Scienze Fisiche E Naturali","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recognition of ethylene plasma image based on dual residual with attention mechanism network\",\"authors\":\"Baoxia Li, Wenzhuo Chen, Shaohuang Bian, A Lusi, Xiaojiang Tang, Yang Liu, Junwei Guo, Dan Zhang, Cheng Yang, Feng Huang\",\"doi\":\"10.1007/s12210-024-01241-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ethylene discharge can be used for particle formation in complex plasma, industrial plasma process, environmental protection, and agricultural process. Ethylene discharge characteristics strongly depends on discharge parameters. Accurate and efficient recognition of discharge parameters is significant for the diagnosis of complex plasma, and industrial and agricultural practical applications. In this paper, we proposed a deep convolution neural network based on dual residual with attention mechanism (DRAM) to recognize discharge parameter through the image fusion of discharge glow and particles during ethylene discharge. It shows that the proposed model can effectively recognize the ethylene discharge parameters with all the four evaluation indicators of accuracy, precision, recall, and <i>F</i>1_Score of higher than 98.8%, respectively. Compared with other six classical recognition models, our model exhibits the best recognition performance. This method provides an effective technical support for the diagnosis and practical application of ethylene plasma.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphic abstract</h3>\\n\",\"PeriodicalId\":54501,\"journal\":{\"name\":\"Rendiconti Lincei-Scienze Fisiche E Naturali\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rendiconti Lincei-Scienze Fisiche E Naturali\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1007/s12210-024-01241-0\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Scienze Fisiche E Naturali","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1007/s12210-024-01241-0","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

乙烯放电可用于复杂等离子体、工业等离子体工艺、环境保护和农业工艺中的颗粒形成。乙烯放电特性在很大程度上取决于放电参数。准确有效地识别放电参数对复杂等离子体的诊断、工业和农业的实际应用具有重要意义。本文提出了一种基于双残差与注意力机制(DRAM)的深度卷积神经网络,通过乙烯放电过程中放电辉光和颗粒的图像融合来识别放电参数。结果表明,所提出的模型能有效识别乙烯放电参数,准确率、精确率、召回率和 F1_Score 四项评价指标均高于 98.8%。与其他六个经典识别模型相比,我们的模型具有最佳的识别性能。该方法为乙烯等离子体的诊断和实际应用提供了有效的技术支持。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Recognition of ethylene plasma image based on dual residual with attention mechanism network

Recognition of ethylene plasma image based on dual residual with attention mechanism network

Ethylene discharge can be used for particle formation in complex plasma, industrial plasma process, environmental protection, and agricultural process. Ethylene discharge characteristics strongly depends on discharge parameters. Accurate and efficient recognition of discharge parameters is significant for the diagnosis of complex plasma, and industrial and agricultural practical applications. In this paper, we proposed a deep convolution neural network based on dual residual with attention mechanism (DRAM) to recognize discharge parameter through the image fusion of discharge glow and particles during ethylene discharge. It shows that the proposed model can effectively recognize the ethylene discharge parameters with all the four evaluation indicators of accuracy, precision, recall, and F1_Score of higher than 98.8%, respectively. Compared with other six classical recognition models, our model exhibits the best recognition performance. This method provides an effective technical support for the diagnosis and practical application of ethylene plasma.

Graphic abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rendiconti Lincei-Scienze Fisiche E Naturali
Rendiconti Lincei-Scienze Fisiche E Naturali MULTIDISCIPLINARY SCIENCES-
CiteScore
4.10
自引率
10.00%
发文量
70
审稿时长
>12 weeks
期刊介绍: Rendiconti is the interdisciplinary scientific journal of the Accademia dei Lincei, the Italian National Academy, situated in Rome, which publishes original articles in the fi elds of geosciences, envi ronmental sciences, and biological and biomedi cal sciences. Particular interest is accorded to papers dealing with modern trends in the natural sciences, with interdisciplinary relationships and with the roots and historical development of these disciplines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信