离散加权勒贝格空间上离散里兹势的估算

IF 1.2 3区 数学 Q1 MATHEMATICS
Xuebing Hao, Baode Li, Shuai Yang
{"title":"离散加权勒贝格空间上离散里兹势的估算","authors":"Xuebing Hao,&nbsp;Baode Li,&nbsp;Shuai Yang","doi":"10.1007/s43034-024-00357-6","DOIUrl":null,"url":null,"abstract":"<div><p>Let <span>\\(0&lt;\\alpha &lt;1\\)</span>. We obtain necessary and sufficient conditions for the boundedness of the discrete fractional Hardy–Littlewood maximal operators <span>\\(\\mathcal {M}_\\alpha \\)</span> on discrete weighted Lebesgue spaces. From this and a discrete variant of the Whitney decomposition theorem, necessary and sufficient conditions for the boundedness of the discrete Riesz potentials <span>\\(I_\\alpha \\)</span> on discrete weighted Lebesgue spaces are discussed. As an application, the boundedness of <span>\\(I_\\alpha \\)</span> on discrete weighted Morrey spaces is further obtained.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 3","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimates of discrete Riesz potentials on discrete weighted Lebesgue spaces\",\"authors\":\"Xuebing Hao,&nbsp;Baode Li,&nbsp;Shuai Yang\",\"doi\":\"10.1007/s43034-024-00357-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <span>\\\\(0&lt;\\\\alpha &lt;1\\\\)</span>. We obtain necessary and sufficient conditions for the boundedness of the discrete fractional Hardy–Littlewood maximal operators <span>\\\\(\\\\mathcal {M}_\\\\alpha \\\\)</span> on discrete weighted Lebesgue spaces. From this and a discrete variant of the Whitney decomposition theorem, necessary and sufficient conditions for the boundedness of the discrete Riesz potentials <span>\\\\(I_\\\\alpha \\\\)</span> on discrete weighted Lebesgue spaces are discussed. As an application, the boundedness of <span>\\\\(I_\\\\alpha \\\\)</span> on discrete weighted Morrey spaces is further obtained.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 3\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00357-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00357-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(0<\alpha <1\).我们得到了离散加权勒贝格空间上离散分数哈代-利特尔伍德最大算子 \(\mathcal {M}_\alpha \) 的有界性的必要条件和充分条件。从这个定理和惠特尼分解定理的离散变体出发,讨论了离散加权勒贝格空间上离散里兹势(I_\alpha \)有界性的必要条件和充分条件。作为应用,进一步得到了离散加权莫雷空间上 \(I_\alpha \) 的有界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimates of discrete Riesz potentials on discrete weighted Lebesgue spaces

Let \(0<\alpha <1\). We obtain necessary and sufficient conditions for the boundedness of the discrete fractional Hardy–Littlewood maximal operators \(\mathcal {M}_\alpha \) on discrete weighted Lebesgue spaces. From this and a discrete variant of the Whitney decomposition theorem, necessary and sufficient conditions for the boundedness of the discrete Riesz potentials \(I_\alpha \) on discrete weighted Lebesgue spaces are discussed. As an application, the boundedness of \(I_\alpha \) on discrete weighted Morrey spaces is further obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信