最小规范点问题的更新与稳定框架

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Satoru Fujishige, Tomonari Kitahara, László A. Végh
{"title":"最小规范点问题的更新与稳定框架","authors":"Satoru Fujishige, Tomonari Kitahara, László A. Végh","doi":"10.1007/s10107-024-02077-0","DOIUrl":null,"url":null,"abstract":"<p>We consider the minimum-norm-point (MNP) problem over polyhedra, a well-studied problem that encompasses linear programming. We present a general algorithmic framework that combines two fundamental approaches for this problem: active set methods and first order methods. Our algorithm performs first order update steps, followed by iterations that aim to ‘stabilize’ the current iterate with additional projections, i.e., find a locally optimal solution whilst keeping the current tight inequalities. Such steps have been previously used in active set methods for the nonnegative least squares (NNLS) problem. We bound on the number of iterations polynomially in the dimension and in the associated circuit imbalance measure. In particular, the algorithm is strongly polynomial for network flow instances. Classical NNLS algorithms such as the Lawson–Hanson algorithm are special instantiations of our framework; as a consequence, we obtain convergence bounds for these algorithms. Our preliminary computational experiments show promising practical performance.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An update-and-stabilize framework for the minimum-norm-point problem\",\"authors\":\"Satoru Fujishige, Tomonari Kitahara, László A. Végh\",\"doi\":\"10.1007/s10107-024-02077-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider the minimum-norm-point (MNP) problem over polyhedra, a well-studied problem that encompasses linear programming. We present a general algorithmic framework that combines two fundamental approaches for this problem: active set methods and first order methods. Our algorithm performs first order update steps, followed by iterations that aim to ‘stabilize’ the current iterate with additional projections, i.e., find a locally optimal solution whilst keeping the current tight inequalities. Such steps have been previously used in active set methods for the nonnegative least squares (NNLS) problem. We bound on the number of iterations polynomially in the dimension and in the associated circuit imbalance measure. In particular, the algorithm is strongly polynomial for network flow instances. Classical NNLS algorithms such as the Lawson–Hanson algorithm are special instantiations of our framework; as a consequence, we obtain convergence bounds for these algorithms. Our preliminary computational experiments show promising practical performance.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-04-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10107-024-02077-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10107-024-02077-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是多面体上的最小规范点(MNP)问题,这是一个经过深入研究的包含线性规划的问题。我们提出了一种通用算法框架,它结合了解决这一问题的两种基本方法:有源集方法和一阶方法。我们的算法执行一阶更新步骤,然后进行迭代,旨在通过额外的投影 "稳定 "当前迭代,即在保持当前紧不等式的同时找到局部最优解。这种步骤以前曾用于非负最小二乘法(NNLS)问题的主动集方法中。我们在维度和相关电路不平衡度量上对迭代次数进行了多项式约束。特别是,对于网络流实例,该算法是强多项式的。经典的 NNLS 算法(如 Lawson-Hanson 算法)是我们框架的特殊实例;因此,我们获得了这些算法的收敛边界。我们的初步计算实验显示了良好的实用性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An update-and-stabilize framework for the minimum-norm-point problem

An update-and-stabilize framework for the minimum-norm-point problem

We consider the minimum-norm-point (MNP) problem over polyhedra, a well-studied problem that encompasses linear programming. We present a general algorithmic framework that combines two fundamental approaches for this problem: active set methods and first order methods. Our algorithm performs first order update steps, followed by iterations that aim to ‘stabilize’ the current iterate with additional projections, i.e., find a locally optimal solution whilst keeping the current tight inequalities. Such steps have been previously used in active set methods for the nonnegative least squares (NNLS) problem. We bound on the number of iterations polynomially in the dimension and in the associated circuit imbalance measure. In particular, the algorithm is strongly polynomial for network flow instances. Classical NNLS algorithms such as the Lawson–Hanson algorithm are special instantiations of our framework; as a consequence, we obtain convergence bounds for these algorithms. Our preliminary computational experiments show promising practical performance.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信