{"title":"严格双曲面的特殊立方体","authors":"Jean-François Lafont, Lorenzo Ruffoni","doi":"10.1007/s00222-024-01241-9","DOIUrl":null,"url":null,"abstract":"<p>We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual <span>\\(\\operatorname {CAT}(0)\\)</span> cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special cubulation of strict hyperbolization\",\"authors\":\"Jean-François Lafont, Lorenzo Ruffoni\",\"doi\":\"10.1007/s00222-024-01241-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual <span>\\\\(\\\\operatorname {CAT}(0)\\\\)</span> cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00222-024-01241-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00222-024-01241-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
We prove that the Gromov hyperbolic groups obtained by the strict hyperbolization procedure of Charney and Davis are virtually compact special, hence linear and residually finite. Our strategy consists in constructing an action of a hyperbolized group on a certain dual \(\operatorname {CAT}(0)\) cubical complex. As a result, all the common applications of strict hyperbolization are shown to provide manifolds with virtually compact special fundamental group. In particular, we obtain examples of closed negatively curved Riemannian manifolds whose fundamental groups are linear and virtually algebraically fiber.