及时的工程策略提高了神经放射学病例中 GPT-4 Turbo 的诊断准确性

Akihiko Wada, Toshiaki Akashi, George Shih, Akifumi Hagiwara, Mitsuo Nishizawa, Yayoi Hayakawa, Junko Kikuta, Keigo Shimoji, Katsuhiro Sano, Koji Kamagata, Atsushi Nakanishi, Shigeki Aoki
{"title":"及时的工程策略提高了神经放射学病例中 GPT-4 Turbo 的诊断准确性","authors":"Akihiko Wada, Toshiaki Akashi, George Shih, Akifumi Hagiwara, Mitsuo Nishizawa, Yayoi Hayakawa, Junko Kikuta, Keigo Shimoji, Katsuhiro Sano, Koji Kamagata, Atsushi Nakanishi, Shigeki Aoki","doi":"10.1101/2024.04.29.24306583","DOIUrl":null,"url":null,"abstract":"<strong>Background</strong> Large language models (LLMs) like GPT-4 demonstrate promising capabilities in medical image analysis, but their practical utility is hindered by substantial misdiagnosis rates ranging from 30-50%.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prompt Engineering Strategies Improve the Diagnostic Accuracy of GPT-4 Turbo in Neuroradiology Cases\",\"authors\":\"Akihiko Wada, Toshiaki Akashi, George Shih, Akifumi Hagiwara, Mitsuo Nishizawa, Yayoi Hayakawa, Junko Kikuta, Keigo Shimoji, Katsuhiro Sano, Koji Kamagata, Atsushi Nakanishi, Shigeki Aoki\",\"doi\":\"10.1101/2024.04.29.24306583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Background</strong> Large language models (LLMs) like GPT-4 demonstrate promising capabilities in medical image analysis, but their practical utility is hindered by substantial misdiagnosis rates ranging from 30-50%.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.04.29.24306583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.29.24306583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景 GPT-4 等大型语言模型(LLMs)在医学图像分析中表现出了良好的能力,但 30-50% 的高误诊率阻碍了它们的实际应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Prompt Engineering Strategies Improve the Diagnostic Accuracy of GPT-4 Turbo in Neuroradiology Cases
Background Large language models (LLMs) like GPT-4 demonstrate promising capabilities in medical image analysis, but their practical utility is hindered by substantial misdiagnosis rates ranging from 30-50%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信