有限生成群的定量诺依曼定理

IF 0.8 2区 数学 Q2 MATHEMATICS
Elia Gorokhovsky, Nicolás Matte Bon, Omer Tamuz
{"title":"有限生成群的定量诺依曼定理","authors":"Elia Gorokhovsky, Nicolás Matte Bon, Omer Tamuz","doi":"10.1007/s11856-024-2617-x","DOIUrl":null,"url":null,"abstract":"<p>We study the coset covering function ℭ(<i>r</i>) of an infinite, finitely generated group: the number of cosets of infinite index subgroups needed to cover the ball of radius <i>r</i>. We show that ℭ(<i>r</i>) is of order at least <span>\\(\\sqrt{r}\\)</span> for all groups. Moreover, we show that ℭ(<i>r</i>) is linear for a class of amenable groups including virtually nilpotent and polycyclic groups, and that it is exponential for property (T) groups.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A quantitative Neumann lemma for finitely generated groups\",\"authors\":\"Elia Gorokhovsky, Nicolás Matte Bon, Omer Tamuz\",\"doi\":\"10.1007/s11856-024-2617-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the coset covering function ℭ(<i>r</i>) of an infinite, finitely generated group: the number of cosets of infinite index subgroups needed to cover the ball of radius <i>r</i>. We show that ℭ(<i>r</i>) is of order at least <span>\\\\(\\\\sqrt{r}\\\\)</span> for all groups. Moreover, we show that ℭ(<i>r</i>) is linear for a class of amenable groups including virtually nilpotent and polycyclic groups, and that it is exponential for property (T) groups.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2617-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2617-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个无限有限生成群的余集覆盖函数ℭ(r):覆盖半径为 r 的球所需的无限索引子群的余集数。我们证明了ℭ(r)对于所有群都至少是 \(s\qrt{r}\)阶。此外,我们还证明了ℭ(r)对于一类可合并群(包括几乎无穷群和多环群)来说是线性的,而对于性质(T)群来说是指数级的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A quantitative Neumann lemma for finitely generated groups

We study the coset covering function ℭ(r) of an infinite, finitely generated group: the number of cosets of infinite index subgroups needed to cover the ball of radius r. We show that ℭ(r) is of order at least \(\sqrt{r}\) for all groups. Moreover, we show that ℭ(r) is linear for a class of amenable groups including virtually nilpotent and polycyclic groups, and that it is exponential for property (T) groups.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信