{"title":"指数化帕累托分布可靠性估计的进展:使用较低记录值的经典方法与贝叶斯方法的比较","authors":"Shubham Saini","doi":"10.1007/s00180-024-01497-y","DOIUrl":null,"url":null,"abstract":"<p>Estimating the reliability of multicomponent systems is crucial in various engineering and reliability analysis applications. This paper investigates the multicomponent stress strength reliability estimation using lower record values, specifically for the exponentiated Pareto distribution. We compare classical estimation techniques, such as maximum likelihood estimation, with Bayesian estimation methods. Under Bayesian estimation, we employ Markov Chain Monte Carlo techniques and Tierney–Kadane’s approximation to obtain the posterior distribution of the reliability parameter. To evaluate the performance of the proposed estimation approaches, we conduct a comprehensive simulation study, considering various system configurations and sample sizes. Additionally, we analyze real data to illustrate the practical applicability of our methods. The proposed methodologies provide valuable insights for engineers and reliability analysts in accurately assessing the reliability of multicomponent systems using lower record values.</p>","PeriodicalId":55223,"journal":{"name":"Computational Statistics","volume":"153 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancements in reliability estimation for the exponentiated Pareto distribution: a comparison of classical and Bayesian methods with lower record values\",\"authors\":\"Shubham Saini\",\"doi\":\"10.1007/s00180-024-01497-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Estimating the reliability of multicomponent systems is crucial in various engineering and reliability analysis applications. This paper investigates the multicomponent stress strength reliability estimation using lower record values, specifically for the exponentiated Pareto distribution. We compare classical estimation techniques, such as maximum likelihood estimation, with Bayesian estimation methods. Under Bayesian estimation, we employ Markov Chain Monte Carlo techniques and Tierney–Kadane’s approximation to obtain the posterior distribution of the reliability parameter. To evaluate the performance of the proposed estimation approaches, we conduct a comprehensive simulation study, considering various system configurations and sample sizes. Additionally, we analyze real data to illustrate the practical applicability of our methods. The proposed methodologies provide valuable insights for engineers and reliability analysts in accurately assessing the reliability of multicomponent systems using lower record values.</p>\",\"PeriodicalId\":55223,\"journal\":{\"name\":\"Computational Statistics\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00180-024-01497-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00180-024-01497-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Advancements in reliability estimation for the exponentiated Pareto distribution: a comparison of classical and Bayesian methods with lower record values
Estimating the reliability of multicomponent systems is crucial in various engineering and reliability analysis applications. This paper investigates the multicomponent stress strength reliability estimation using lower record values, specifically for the exponentiated Pareto distribution. We compare classical estimation techniques, such as maximum likelihood estimation, with Bayesian estimation methods. Under Bayesian estimation, we employ Markov Chain Monte Carlo techniques and Tierney–Kadane’s approximation to obtain the posterior distribution of the reliability parameter. To evaluate the performance of the proposed estimation approaches, we conduct a comprehensive simulation study, considering various system configurations and sample sizes. Additionally, we analyze real data to illustrate the practical applicability of our methods. The proposed methodologies provide valuable insights for engineers and reliability analysts in accurately assessing the reliability of multicomponent systems using lower record values.
期刊介绍:
Computational Statistics (CompStat) is an international journal which promotes the publication of applications and methodological research in the field of Computational Statistics. The focus of papers in CompStat is on the contribution to and influence of computing on statistics and vice versa. The journal provides a forum for computer scientists, mathematicians, and statisticians in a variety of fields of statistics such as biometrics, econometrics, data analysis, graphics, simulation, algorithms, knowledge based systems, and Bayesian computing. CompStat publishes hardware, software plus package reports.