形式幂级数环中迭代群的一个显式实例

Pub Date : 2024-05-06 DOI:10.1007/s00010-024-01070-4
Wojciech Jabłoński
{"title":"形式幂级数环中迭代群的一个显式实例","authors":"Wojciech Jabłoński","doi":"10.1007/s00010-024-01070-4","DOIUrl":null,"url":null,"abstract":"<div><p>We give an example of some iteration group in a ring of formal power series over a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter group of (truncated) formal power series under an additional condition. Consequently, we are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky differential equation in the ring of truncated formal power series.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01070-4.pdf","citationCount":"0","resultStr":"{\"title\":\"An explicit example of an iteration group in the ring of formal power series\",\"authors\":\"Wojciech Jabłoński\",\"doi\":\"10.1007/s00010-024-01070-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give an example of some iteration group in a ring of formal power series over a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter group of (truncated) formal power series under an additional condition. Consequently, we are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky differential equation in the ring of truncated formal power series.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01070-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01070-4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01070-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们举例说明了在特征为 0 的域上的形式幂级数环中的某个迭代群。通过这个例子,我们可以在一个附加条件下得到某些(截断的)形式幂级数的单参数群的明确公式。因此,我们能够证明在截断形式幂级数环中的第三个 Aczél-Jabotinsky 微分方程解的一些非交换群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
An explicit example of an iteration group in the ring of formal power series

We give an example of some iteration group in a ring of formal power series over a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter group of (truncated) formal power series under an additional condition. Consequently, we are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky differential equation in the ring of truncated formal power series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信