{"title":"形式幂级数环中迭代群的一个显式实例","authors":"Wojciech Jabłoński","doi":"10.1007/s00010-024-01070-4","DOIUrl":null,"url":null,"abstract":"<div><p>We give an example of some iteration group in a ring of formal power series over a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter group of (truncated) formal power series under an additional condition. Consequently, we are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky differential equation in the ring of truncated formal power series.</p></div>","PeriodicalId":55611,"journal":{"name":"Aequationes Mathematicae","volume":"98 3","pages":"837 - 850"},"PeriodicalIF":0.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00010-024-01070-4.pdf","citationCount":"0","resultStr":"{\"title\":\"An explicit example of an iteration group in the ring of formal power series\",\"authors\":\"Wojciech Jabłoński\",\"doi\":\"10.1007/s00010-024-01070-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give an example of some iteration group in a ring of formal power series over a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter group of (truncated) formal power series under an additional condition. Consequently, we are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky differential equation in the ring of truncated formal power series.</p></div>\",\"PeriodicalId\":55611,\"journal\":{\"name\":\"Aequationes Mathematicae\",\"volume\":\"98 3\",\"pages\":\"837 - 850\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00010-024-01070-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Aequationes Mathematicae\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00010-024-01070-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Aequationes Mathematicae","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00010-024-01070-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
An explicit example of an iteration group in the ring of formal power series
We give an example of some iteration group in a ring of formal power series over a field of characteristic 0. It allows us to obtain an explicit formula for some one-parameter group of (truncated) formal power series under an additional condition. Consequently, we are able to show some non-commutative groups of solutions of the third Aczél-Jabotinsky differential equation in the ring of truncated formal power series.
期刊介绍:
aequationes mathematicae is an international journal of pure and applied mathematics, which emphasizes functional equations, dynamical systems, iteration theory, combinatorics, and geometry. The journal publishes research papers, reports of meetings, and bibliographies. High quality survey articles are an especially welcome feature. In addition, summaries of recent developments and research in the field are published rapidly.