{"title":"利用多通道测量数据的频谱分析对复杂系统进行功能断层扫描","authors":"M. N. Ustinin, A. I. Boyko, S. D. Rykunov","doi":"10.1134/s1054661823040491","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>A new method has been proposed for determining the structure of complex biological and physical systems from their electromagnetic fields. The method is based on spectral analysis of multichannel time series. Optimization of the Fourier transform is achieved by integrating long-term time series. Fine tuning to a given frequency is also possible to increase the signal-to-noise ratio. When analyzing a detailed multichannel spectrum, the signal is reconstructed at each frequency and the inverse problem is solved for the resulting field map. Using the model of one elementary source allows one to correctly solve the inverse problem by exhaustive search. The set of found elementary sources for all frequencies represents the functional structure of the complex system being studied. The method was verified on computer and physical models, after which it was successfully applied in various biological problems. The separation of the encephalogram into a signal from the brain and physiological noise was obtained.</p>","PeriodicalId":35400,"journal":{"name":"PATTERN RECOGNITION AND IMAGE ANALYSIS","volume":"17 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional Tomography of Complex Systems Using Spectral Analysis of Multichannel Measurement Data\",\"authors\":\"M. N. Ustinin, A. I. Boyko, S. D. Rykunov\",\"doi\":\"10.1134/s1054661823040491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>A new method has been proposed for determining the structure of complex biological and physical systems from their electromagnetic fields. The method is based on spectral analysis of multichannel time series. Optimization of the Fourier transform is achieved by integrating long-term time series. Fine tuning to a given frequency is also possible to increase the signal-to-noise ratio. When analyzing a detailed multichannel spectrum, the signal is reconstructed at each frequency and the inverse problem is solved for the resulting field map. Using the model of one elementary source allows one to correctly solve the inverse problem by exhaustive search. The set of found elementary sources for all frequencies represents the functional structure of the complex system being studied. The method was verified on computer and physical models, after which it was successfully applied in various biological problems. The separation of the encephalogram into a signal from the brain and physiological noise was obtained.</p>\",\"PeriodicalId\":35400,\"journal\":{\"name\":\"PATTERN RECOGNITION AND IMAGE ANALYSIS\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PATTERN RECOGNITION AND IMAGE ANALYSIS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1134/s1054661823040491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PATTERN RECOGNITION AND IMAGE ANALYSIS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1134/s1054661823040491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Functional Tomography of Complex Systems Using Spectral Analysis of Multichannel Measurement Data
Abstract
A new method has been proposed for determining the structure of complex biological and physical systems from their electromagnetic fields. The method is based on spectral analysis of multichannel time series. Optimization of the Fourier transform is achieved by integrating long-term time series. Fine tuning to a given frequency is also possible to increase the signal-to-noise ratio. When analyzing a detailed multichannel spectrum, the signal is reconstructed at each frequency and the inverse problem is solved for the resulting field map. Using the model of one elementary source allows one to correctly solve the inverse problem by exhaustive search. The set of found elementary sources for all frequencies represents the functional structure of the complex system being studied. The method was verified on computer and physical models, after which it was successfully applied in various biological problems. The separation of the encephalogram into a signal from the brain and physiological noise was obtained.
期刊介绍:
The purpose of the journal is to publish high-quality peer-reviewed scientific and technical materials that present the results of fundamental and applied scientific research in the field of image processing, recognition, analysis and understanding, pattern recognition, artificial intelligence, and related fields of theoretical and applied computer science and applied mathematics. The policy of the journal provides for the rapid publication of original scientific articles, analytical reviews, articles of the world''s leading scientists and specialists on the subject of the journal solicited by the editorial board, special thematic issues, proceedings of the world''s leading scientific conferences and seminars, as well as short reports containing new results of fundamental and applied research in the field of mathematical theory and methodology of image analysis, mathematical theory and methodology of image recognition, and mathematical foundations and methodology of artificial intelligence. The journal also publishes articles on the use of the apparatus and methods of the mathematical theory of image analysis and the mathematical theory of image recognition for the development of new information technologies and their supporting software and algorithmic complexes and systems for solving complex and particularly important applied problems. The main scientific areas are the mathematical theory of image analysis and the mathematical theory of pattern recognition. The journal also embraces the problems of analyzing and evaluating poorly formalized, poorly structured, incomplete, contradictory and noisy information, including artificial intelligence, bioinformatics, medical informatics, data mining, big data analysis, machine vision, data representation and modeling, data and knowledge extraction from images, machine learning, forecasting, machine graphics, databases, knowledge bases, medical and technical diagnostics, neural networks, specialized software, specialized computational architectures for information analysis and evaluation, linguistic, psychological, psychophysical, and physiological aspects of image analysis and pattern recognition, applied problems, and related problems. Articles can be submitted either in English or Russian. The English language is preferable. Pattern Recognition and Image Analysis is a hybrid journal that publishes mostly subscription articles that are free of charge for the authors, but also accepts Open Access articles with article processing charges. The journal is one of the top 10 global periodicals on image analysis and pattern recognition and is the only publication on this topic in the Russian Federation, Central and Eastern Europe.