指数型全函数小于整数阶的里兹衍的伯恩斯坦不等式

Pub Date : 2024-03-14 DOI:10.1134/S1064562423701491
A. O. Leont’eva
{"title":"指数型全函数小于整数阶的里兹衍的伯恩斯坦不等式","authors":"A. O. Leont’eva","doi":"10.1134/S1064562423701491","DOIUrl":null,"url":null,"abstract":"<p>We consider Bernstein inequality for the Riesz derivative of order <span>\\(0 &lt; \\alpha &lt; 1\\)</span> of entire function of exponential type in the uniform norm on the real line. The interpolation formula is obtained for this operator; this formula has non-equidistant nodes. By means of this formula, the exact Bernstein inequality is found for all <span>\\(0 &lt; \\alpha &lt; 1\\)</span>, namely, the extremal entire function and the sharp constant are written out.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernstein Inequality for the Riesz Derivative of Fractional Order Less Than Unity of Entire Functions of Exponential Type\",\"authors\":\"A. O. Leont’eva\",\"doi\":\"10.1134/S1064562423701491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider Bernstein inequality for the Riesz derivative of order <span>\\\\(0 &lt; \\\\alpha &lt; 1\\\\)</span> of entire function of exponential type in the uniform norm on the real line. The interpolation formula is obtained for this operator; this formula has non-equidistant nodes. By means of this formula, the exact Bernstein inequality is found for all <span>\\\\(0 &lt; \\\\alpha &lt; 1\\\\)</span>, namely, the extremal entire function and the sharp constant are written out.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We consider Bernstein inequality for the Riesz derivative of order \(0 < \alpha < 1\) of entire function of exponential type in the uniform norm on the real line.可以得到这个算子的插值公式;这个公式有非等距节点。通过这个公式,找到了所有 \(0 < \alpha < 1\) 的精确伯恩斯坦不等式,即写出了极值整个函数和锐常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Bernstein Inequality for the Riesz Derivative of Fractional Order Less Than Unity of Entire Functions of Exponential Type

We consider Bernstein inequality for the Riesz derivative of order \(0 < \alpha < 1\) of entire function of exponential type in the uniform norm on the real line. The interpolation formula is obtained for this operator; this formula has non-equidistant nodes. By means of this formula, the exact Bernstein inequality is found for all \(0 < \alpha < 1\), namely, the extremal entire function and the sharp constant are written out.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信