{"title":"指数型全函数小于整数阶的里兹衍的伯恩斯坦不等式","authors":"A. O. Leont’eva","doi":"10.1134/S1064562423701491","DOIUrl":null,"url":null,"abstract":"<p>We consider Bernstein inequality for the Riesz derivative of order <span>\\(0 < \\alpha < 1\\)</span> of entire function of exponential type in the uniform norm on the real line. The interpolation formula is obtained for this operator; this formula has non-equidistant nodes. By means of this formula, the exact Bernstein inequality is found for all <span>\\(0 < \\alpha < 1\\)</span>, namely, the extremal entire function and the sharp constant are written out.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bernstein Inequality for the Riesz Derivative of Fractional Order Less Than Unity of Entire Functions of Exponential Type\",\"authors\":\"A. O. Leont’eva\",\"doi\":\"10.1134/S1064562423701491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We consider Bernstein inequality for the Riesz derivative of order <span>\\\\(0 < \\\\alpha < 1\\\\)</span> of entire function of exponential type in the uniform norm on the real line. The interpolation formula is obtained for this operator; this formula has non-equidistant nodes. By means of this formula, the exact Bernstein inequality is found for all <span>\\\\(0 < \\\\alpha < 1\\\\)</span>, namely, the extremal entire function and the sharp constant are written out.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Abstract We consider Bernstein inequality for the Riesz derivative of order \(0 < \alpha < 1\) of entire function of exponential type in the uniform norm on the real line.可以得到这个算子的插值公式;这个公式有非等距节点。通过这个公式,找到了所有 \(0 < \alpha < 1\) 的精确伯恩斯坦不等式,即写出了极值整个函数和锐常数。
Bernstein Inequality for the Riesz Derivative of Fractional Order Less Than Unity of Entire Functions of Exponential Type
We consider Bernstein inequality for the Riesz derivative of order \(0 < \alpha < 1\) of entire function of exponential type in the uniform norm on the real line. The interpolation formula is obtained for this operator; this formula has non-equidistant nodes. By means of this formula, the exact Bernstein inequality is found for all \(0 < \alpha < 1\), namely, the extremal entire function and the sharp constant are written out.