厄尔多斯-雷尼随机图中的诱导森林和树

Pub Date : 2024-05-02 DOI:10.1134/S1064562424701886
M. B. Akhmejanova, V. S. Kozhevnikov
{"title":"厄尔多斯-雷尼随机图中的诱导森林和树","authors":"M. B. Akhmejanova,&nbsp;V. S. Kozhevnikov","doi":"10.1134/S1064562424701886","DOIUrl":null,"url":null,"abstract":"<p>We prove that the size of the maximum induced forest (of bounded and unbounded degree) in the binomial random graph <span>\\(G(n,p)\\)</span> for <span>\\({{C}_{\\varepsilon }}{\\text{/}}n &lt; p &lt; 1 - \\varepsilon \\)</span> with an arbitrary fixed <span>\\(\\varepsilon &gt; 0\\)</span> is concentrated in an interval of size <span>\\(o(1{\\text{/}}p)\\)</span>. We also show 2-point concentration for the size of the maximum induced forest (and tree) of bounded degree in <span>\\(G(n,p)\\)</span> for <i>p</i> = const.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Induced Forests and Trees in Erdős–Rényi Random Graph\",\"authors\":\"M. B. Akhmejanova,&nbsp;V. S. Kozhevnikov\",\"doi\":\"10.1134/S1064562424701886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove that the size of the maximum induced forest (of bounded and unbounded degree) in the binomial random graph <span>\\\\(G(n,p)\\\\)</span> for <span>\\\\({{C}_{\\\\varepsilon }}{\\\\text{/}}n &lt; p &lt; 1 - \\\\varepsilon \\\\)</span> with an arbitrary fixed <span>\\\\(\\\\varepsilon &gt; 0\\\\)</span> is concentrated in an interval of size <span>\\\\(o(1{\\\\text{/}}p)\\\\)</span>. We also show 2-point concentration for the size of the maximum induced forest (and tree) of bounded degree in <span>\\\\(G(n,p)\\\\)</span> for <i>p</i> = const.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

Abstract We prove that the size of the maximum induced forest (of bounded and unbounded degree) in the binomial random graph \(G(n,p)\) for \({{C}_{\varepsilon }}{text{/}}n <;p < 1 - \varepsilon \)集中在一个大小为 \(o(1{\text{/}}p)\) 的区间内。我们还证明了在 p = const 的情况下,\(G(n,p)\)中最大诱导林(和树)的有界度大小的 2 点集中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Induced Forests and Trees in Erdős–Rényi Random Graph

We prove that the size of the maximum induced forest (of bounded and unbounded degree) in the binomial random graph \(G(n,p)\) for \({{C}_{\varepsilon }}{\text{/}}n < p < 1 - \varepsilon \) with an arbitrary fixed \(\varepsilon > 0\) is concentrated in an interval of size \(o(1{\text{/}}p)\). We also show 2-point concentration for the size of the maximum induced forest (and tree) of bounded degree in \(G(n,p)\) for p = const.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信