单调随机有限和变分不等式的批处理方法优化分析

Pub Date : 2024-03-25 DOI:10.1134/S1064562423701582
A. Pichugin, M. Pechin, A. Beznosikov, A. Savchenko, A. Gasnikov
{"title":"单调随机有限和变分不等式的批处理方法优化分析","authors":"A. Pichugin,&nbsp;M. Pechin,&nbsp;A. Beznosikov,&nbsp;A. Savchenko,&nbsp;A. Gasnikov","doi":"10.1134/S1064562423701582","DOIUrl":null,"url":null,"abstract":"<p>Variational inequalities are a universal optimization paradigm that is interesting in itself, but also incorporates classical minimization and saddle point problems. Modern realities encourage to consider stochastic formulations of optimization problems. In this paper, we present an analysis of a method that gives optimal convergence estimates for monotone stochastic finite-sum variational inequalities. In contrast to the previous works, our method supports batching and does not lose the oracle complexity optimality. The effectiveness of the algorithm, especially in the case of small but not single batches is confirmed experimentally.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Analysis of Method with Batching for Monotone Stochastic Finite-Sum Variational Inequalities\",\"authors\":\"A. Pichugin,&nbsp;M. Pechin,&nbsp;A. Beznosikov,&nbsp;A. Savchenko,&nbsp;A. Gasnikov\",\"doi\":\"10.1134/S1064562423701582\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Variational inequalities are a universal optimization paradigm that is interesting in itself, but also incorporates classical minimization and saddle point problems. Modern realities encourage to consider stochastic formulations of optimization problems. In this paper, we present an analysis of a method that gives optimal convergence estimates for monotone stochastic finite-sum variational inequalities. In contrast to the previous works, our method supports batching and does not lose the oracle complexity optimality. The effectiveness of the algorithm, especially in the case of small but not single batches is confirmed experimentally.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701582\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701582","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 变量不等式是一种通用的优化范式,它本身就很有趣,而且还包含经典的最小化和鞍点问题。现代社会鼓励考虑优化问题的随机形式。本文分析了一种方法,它能给出单调随机有限和变分不等式的最佳收敛估计值。与前人的研究相比,我们的方法支持批处理,而且不会失去甲骨文复杂性的最优性。实验证实了该算法的有效性,尤其是在批量较小但不单一的情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal Analysis of Method with Batching for Monotone Stochastic Finite-Sum Variational Inequalities

Optimal Analysis of Method with Batching for Monotone Stochastic Finite-Sum Variational Inequalities

分享
查看原文
Optimal Analysis of Method with Batching for Monotone Stochastic Finite-Sum Variational Inequalities

Variational inequalities are a universal optimization paradigm that is interesting in itself, but also incorporates classical minimization and saddle point problems. Modern realities encourage to consider stochastic formulations of optimization problems. In this paper, we present an analysis of a method that gives optimal convergence estimates for monotone stochastic finite-sum variational inequalities. In contrast to the previous works, our method supports batching and does not lose the oracle complexity optimality. The effectiveness of the algorithm, especially in the case of small but not single batches is confirmed experimentally.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信