估算损失面非凸性的一维拓扑不变式

Pub Date : 2024-03-25 DOI:10.1134/S1064562423701569
D. S. Voronkova, S. A. Barannikov, E. V. Burnaev
{"title":"估算损失面非凸性的一维拓扑不变式","authors":"D. S. Voronkova,&nbsp;S. A. Barannikov,&nbsp;E. V. Burnaev","doi":"10.1134/S1064562423701569","DOIUrl":null,"url":null,"abstract":"<p>We utilize the framework of topological data analysis to examine the geometry of loss landscape. With the use of topology and Morse theory, we propose to analyse 1-dimensional topological invariants as a measure of loss function non-convexity up to arbitrary re-parametrization. The proposed approach uses optimization of 2-dimensional simplices in network weights space and allows to conduct both qualitative and quantitative evaluation of loss landscape to gain insights into behavior and optimization of neural networks. We provide geometrical interpretation of the topological invariants and describe the algorithm for their computation. We expect that the proposed approach can complement the existing tools for analysis of loss landscape and shed light on unresolved issues in the field of deep learning.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"1-Dimensional Topological Invariants to Estimate Loss Surface Non-Convexity\",\"authors\":\"D. S. Voronkova,&nbsp;S. A. Barannikov,&nbsp;E. V. Burnaev\",\"doi\":\"10.1134/S1064562423701569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We utilize the framework of topological data analysis to examine the geometry of loss landscape. With the use of topology and Morse theory, we propose to analyse 1-dimensional topological invariants as a measure of loss function non-convexity up to arbitrary re-parametrization. The proposed approach uses optimization of 2-dimensional simplices in network weights space and allows to conduct both qualitative and quantitative evaluation of loss landscape to gain insights into behavior and optimization of neural networks. We provide geometrical interpretation of the topological invariants and describe the algorithm for their computation. We expect that the proposed approach can complement the existing tools for analysis of loss landscape and shed light on unresolved issues in the field of deep learning.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562423701569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562423701569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要 我们利用拓扑数据分析框架来研究损失景观的几何形状。利用拓扑学和莫尔斯理论,我们提出分析一维拓扑不变量,将其作为损失函数在任意重参数化条件下的非凸性度量。我们提出的方法使用网络权重空间中的二维简约优化,可以对损失景观进行定性和定量评估,从而深入了解神经网络的行为和优化。我们提供了拓扑不变式的几何解释,并描述了计算拓扑不变式的算法。我们希望所提出的方法能够补充现有的损失景观分析工具,并揭示深度学习领域尚未解决的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

1-Dimensional Topological Invariants to Estimate Loss Surface Non-Convexity

1-Dimensional Topological Invariants to Estimate Loss Surface Non-Convexity

分享
查看原文
1-Dimensional Topological Invariants to Estimate Loss Surface Non-Convexity

We utilize the framework of topological data analysis to examine the geometry of loss landscape. With the use of topology and Morse theory, we propose to analyse 1-dimensional topological invariants as a measure of loss function non-convexity up to arbitrary re-parametrization. The proposed approach uses optimization of 2-dimensional simplices in network weights space and allows to conduct both qualitative and quantitative evaluation of loss landscape to gain insights into behavior and optimization of neural networks. We provide geometrical interpretation of the topological invariants and describe the algorithm for their computation. We expect that the proposed approach can complement the existing tools for analysis of loss landscape and shed light on unresolved issues in the field of deep learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信