{"title":"全态二次微分度量的柳维尔电流","authors":"Jiajun Shi","doi":"10.1007/s10711-024-00928-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper we study the Liouville current of flat cone metrics coming from a holomorphic quadratic differential. Anja Bankovic and Christopher J. Leininger proved in Bankovic and Leininger (Trans Am Math Soc 370:1867–1884, 2018) that for a fixed closed surface, there is an injection map from the space of flat cone metrics to the space of geodesic currents. We manage to show that metrics coming from holomorphic quadratic differentials can be distinguished from other flat metrics by just looking at the geodesic currents. The key idea is to analyze the support of Liouville current, which is a topological invariant independent of the metric, and get information about cone angles and holonomy. The holonomy part involves some subtlety of relationship between singular foliation and geodesic lamination. We also obtain a new proof of a classical result that almost all simple geodesics of a quadratic differential metric will be dense in the surface. Furthermore, for other flat cone metrics, there is no simple dense geodesic.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Liouville current of holomorphic quadratic differential metrics\",\"authors\":\"Jiajun Shi\",\"doi\":\"10.1007/s10711-024-00928-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we study the Liouville current of flat cone metrics coming from a holomorphic quadratic differential. Anja Bankovic and Christopher J. Leininger proved in Bankovic and Leininger (Trans Am Math Soc 370:1867–1884, 2018) that for a fixed closed surface, there is an injection map from the space of flat cone metrics to the space of geodesic currents. We manage to show that metrics coming from holomorphic quadratic differentials can be distinguished from other flat metrics by just looking at the geodesic currents. The key idea is to analyze the support of Liouville current, which is a topological invariant independent of the metric, and get information about cone angles and holonomy. The holonomy part involves some subtlety of relationship between singular foliation and geodesic lamination. We also obtain a new proof of a classical result that almost all simple geodesics of a quadratic differential metric will be dense in the surface. Furthermore, for other flat cone metrics, there is no simple dense geodesic.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00928-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00928-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文研究来自全形二次微分的平锥度量的柳维尔流。Anja Bankovic 和 Christopher J. Leininger 在 Bankovic and Leininger (Trans Am Math Soc 370:1867-1884, 2018) 中证明,对于一个固定的封闭曲面,存在一个从平锥度量空间到大地电流空间的注入映射。我们设法证明,来自全形二次微分的度量只需观察测地电流就能与其他平面度量区分开来。关键的思路是分析柳维尔电流的支撑(这是一个独立于度量的拓扑不变量),并获得有关锥角和整体性的信息。整体性部分涉及奇异对折与大地层理之间的一些微妙关系。我们还得到了一个经典结果的新证明,即二次微分度量的几乎所有简单大地线都将密集于曲面。此外,对于其他平锥度量,不存在简单密集的大地线。
The Liouville current of holomorphic quadratic differential metrics
In this paper we study the Liouville current of flat cone metrics coming from a holomorphic quadratic differential. Anja Bankovic and Christopher J. Leininger proved in Bankovic and Leininger (Trans Am Math Soc 370:1867–1884, 2018) that for a fixed closed surface, there is an injection map from the space of flat cone metrics to the space of geodesic currents. We manage to show that metrics coming from holomorphic quadratic differentials can be distinguished from other flat metrics by just looking at the geodesic currents. The key idea is to analyze the support of Liouville current, which is a topological invariant independent of the metric, and get information about cone angles and holonomy. The holonomy part involves some subtlety of relationship between singular foliation and geodesic lamination. We also obtain a new proof of a classical result that almost all simple geodesics of a quadratic differential metric will be dense in the surface. Furthermore, for other flat cone metrics, there is no simple dense geodesic.