论具有点相互作用的薛定谔不变算子的核。格里涅维奇-诺维科夫猜想

Pub Date : 2024-05-02 DOI:10.1134/S1064562424701904
M. M. Malamud, V. V. Marchenko
{"title":"论具有点相互作用的薛定谔不变算子的核。格里涅维奇-诺维科夫猜想","authors":"M. M. Malamud,&nbsp;V. V. Marchenko","doi":"10.1134/S1064562424701904","DOIUrl":null,"url":null,"abstract":"<p>According to Berezin and Faddeev, a Schrödinger operator with point interactions –Δ + <span>\\(\\sum\\limits_{j = 1}^m {{\\alpha }_{j}}\\delta (x - {{x}_{j}}),X = \\{ {{x}_{j}}\\} _{1}^{m} \\subset {{\\mathbb{R}}^{3}},\\{ {{\\alpha }_{j}}\\} _{1}^{m} \\subset \\mathbb{R},\\)</span> is any self-adjoint extension of the restriction <span>\\({{\\Delta }_{X}}\\)</span> of the Laplace operator <span>\\( - \\Delta \\)</span> to the subset <span>\\(\\{ f \\in {{H}^{2}}({{\\mathbb{R}}^{3}}):f({{x}_{j}}) = 0,\\;1 \\leqslant j \\leqslant m\\} \\)</span> of the Sobolev space <span>\\({{H}^{2}}({{\\mathbb{R}}^{3}})\\)</span>. The present paper studies the extensions (realizations) invariant under the symmetry group of the vertex set <span>\\(X = \\{ {{x}_{j}}\\} _{1}^{m}\\)</span> of a regular <i>m</i>-gon. Such realizations <b>H</b><sub><i>B</i></sub> are parametrized by special circulant matrices <span>\\(B \\in {{\\mathbb{C}}^{{m \\times m}}}\\)</span>. We describe all such realizations with non-trivial kernels. А Grinevich–Novikov conjecture on simplicity of the zero eigenvalue of the realization <b>H</b><sub><i>B</i></sub> with a scalar matrix <span>\\(B = \\alpha I\\)</span> and an even <i>m</i> is proved. It is shown that for an odd <i>m</i> non-trivial kernels of all realizations <b>H</b><sub><i>B</i></sub> with scalar <span>\\(B = \\alpha I\\)</span> are two-dimensional. Besides, for arbitrary realizations <span>\\((B \\ne \\alpha I)\\)</span> the estimate <span>\\(\\dim (\\ker {{{\\mathbf{H}}}_{B}}) \\leqslant m - 1\\)</span> is proved, and all invariant realizations of the maximal dimension <span>\\(\\dim (\\ker {{{\\mathbf{H}}}_{B}}) = m - 1\\)</span> are described. One of them is the Krein realization, which is the minimal positive extension of the operator <span>\\({{\\Delta }_{X}}\\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Kernels of Invariant Schrödinger Operators with Point Interactions. Grinevich–Novikov Conjecture\",\"authors\":\"M. M. Malamud,&nbsp;V. V. Marchenko\",\"doi\":\"10.1134/S1064562424701904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>According to Berezin and Faddeev, a Schrödinger operator with point interactions –Δ + <span>\\\\(\\\\sum\\\\limits_{j = 1}^m {{\\\\alpha }_{j}}\\\\delta (x - {{x}_{j}}),X = \\\\{ {{x}_{j}}\\\\} _{1}^{m} \\\\subset {{\\\\mathbb{R}}^{3}},\\\\{ {{\\\\alpha }_{j}}\\\\} _{1}^{m} \\\\subset \\\\mathbb{R},\\\\)</span> is any self-adjoint extension of the restriction <span>\\\\({{\\\\Delta }_{X}}\\\\)</span> of the Laplace operator <span>\\\\( - \\\\Delta \\\\)</span> to the subset <span>\\\\(\\\\{ f \\\\in {{H}^{2}}({{\\\\mathbb{R}}^{3}}):f({{x}_{j}}) = 0,\\\\;1 \\\\leqslant j \\\\leqslant m\\\\} \\\\)</span> of the Sobolev space <span>\\\\({{H}^{2}}({{\\\\mathbb{R}}^{3}})\\\\)</span>. The present paper studies the extensions (realizations) invariant under the symmetry group of the vertex set <span>\\\\(X = \\\\{ {{x}_{j}}\\\\} _{1}^{m}\\\\)</span> of a regular <i>m</i>-gon. Such realizations <b>H</b><sub><i>B</i></sub> are parametrized by special circulant matrices <span>\\\\(B \\\\in {{\\\\mathbb{C}}^{{m \\\\times m}}}\\\\)</span>. We describe all such realizations with non-trivial kernels. А Grinevich–Novikov conjecture on simplicity of the zero eigenvalue of the realization <b>H</b><sub><i>B</i></sub> with a scalar matrix <span>\\\\(B = \\\\alpha I\\\\)</span> and an even <i>m</i> is proved. It is shown that for an odd <i>m</i> non-trivial kernels of all realizations <b>H</b><sub><i>B</i></sub> with scalar <span>\\\\(B = \\\\alpha I\\\\)</span> are two-dimensional. Besides, for arbitrary realizations <span>\\\\((B \\\\ne \\\\alpha I)\\\\)</span> the estimate <span>\\\\(\\\\dim (\\\\ker {{{\\\\mathbf{H}}}_{B}}) \\\\leqslant m - 1\\\\)</span> is proved, and all invariant realizations of the maximal dimension <span>\\\\(\\\\dim (\\\\ker {{{\\\\mathbf{H}}}_{B}}) = m - 1\\\\)</span> are described. One of them is the Krein realization, which is the minimal positive extension of the operator <span>\\\\({{\\\\Delta }_{X}}\\\\)</span>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1064562424701904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1134/S1064562424701904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

AbstractAccording to Berezin and Faddeev, a Schrödinger operator with point interactions -Δ + \(\sum\limits_{j = 1}^m {{alpha }_{j}}\delta (x - {{x}_{j}}),X = \{ {{x}_{j}}\}_{1}^{m}\子集 {{{mathbb{R}}^{3}}, {{{\alpha }_{{j}}\}_{1}^{m}\是拉普拉斯算子\( - \Delta \)到子集 \(\{ f \in {{H}^{2}}({{\mathbb{R}}^{3}}) 的限制\({{\Delta }_{X}}\)的任意自交扩展:f({{x}_{j}}) = 0,1 \leqslant j \leqslant m\}) 的子集。\)的 Sobolev 空间({{H}^{2}}({{\mathbb{R}}^{3}}))。本文研究的是在正则 m-gon 的顶点集 \(X = \{{x}_{j}}\} _{1}^{m}\) 的对称组下不变的扩展(实现)。这样的实现 HB 是由特殊的圆周矩阵 \(B \in {{\mathbb{C}}^{m \times m}}\) 参数化的。我们将描述所有这些具有非三维内核的实现。我们证明了格里涅维奇-诺维科夫猜想(А Grinevich-Novikov conjecture on simplicity of the zero eigenvalue of the realization HB with a scalar matrix \(B = \alpha I\) and an even m)。结果表明,对于奇数 m,所有具有标量矩阵 \(B = \alpha I\) 的实现 HB 的非琐核都是二维的。此外,对于任意的实现((B = α I)),证明了估计值 \(\dim (\ker {{\mathbf{H}}}_{B}}) \leqslant m - 1\) ,并描述了最大维度 \(\dim (\ker {{\mathbf{H}}}_{B}}) = m - 1\) 的所有不变实现。其中之一是 Krein 实现,它是算子 \({{\Delta }_{X}}\) 的最小正扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On Kernels of Invariant Schrödinger Operators with Point Interactions. Grinevich–Novikov Conjecture

According to Berezin and Faddeev, a Schrödinger operator with point interactions –Δ + \(\sum\limits_{j = 1}^m {{\alpha }_{j}}\delta (x - {{x}_{j}}),X = \{ {{x}_{j}}\} _{1}^{m} \subset {{\mathbb{R}}^{3}},\{ {{\alpha }_{j}}\} _{1}^{m} \subset \mathbb{R},\) is any self-adjoint extension of the restriction \({{\Delta }_{X}}\) of the Laplace operator \( - \Delta \) to the subset \(\{ f \in {{H}^{2}}({{\mathbb{R}}^{3}}):f({{x}_{j}}) = 0,\;1 \leqslant j \leqslant m\} \) of the Sobolev space \({{H}^{2}}({{\mathbb{R}}^{3}})\). The present paper studies the extensions (realizations) invariant under the symmetry group of the vertex set \(X = \{ {{x}_{j}}\} _{1}^{m}\) of a regular m-gon. Such realizations HB are parametrized by special circulant matrices \(B \in {{\mathbb{C}}^{{m \times m}}}\). We describe all such realizations with non-trivial kernels. А Grinevich–Novikov conjecture on simplicity of the zero eigenvalue of the realization HB with a scalar matrix \(B = \alpha I\) and an even m is proved. It is shown that for an odd m non-trivial kernels of all realizations HB with scalar \(B = \alpha I\) are two-dimensional. Besides, for arbitrary realizations \((B \ne \alpha I)\) the estimate \(\dim (\ker {{{\mathbf{H}}}_{B}}) \leqslant m - 1\) is proved, and all invariant realizations of the maximal dimension \(\dim (\ker {{{\mathbf{H}}}_{B}}) = m - 1\) are described. One of them is the Krein realization, which is the minimal positive extension of the operator \({{\Delta }_{X}}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信