维奇 1969 型区间交换变换的最小性和唯一遍历性

Pub Date : 2024-05-03 DOI:10.1007/s10711-024-00888-1
Sébastien Ferenczi, Pascal Hubert
{"title":"维奇 1969 型区间交换变换的最小性和唯一遍历性","authors":"Sébastien Ferenczi, Pascal Hubert","doi":"10.1007/s10711-024-00888-1","DOIUrl":null,"url":null,"abstract":"<p>We give conditions for minimality of <span>\\({\\mathbb {Z}}/N{\\mathbb {Z}}\\)</span> extensions of a rotation of angle <span>\\(\\alpha \\)</span> with one marked point, solving the problem for any prime <i>N</i>: for <span>\\(N=2\\)</span>, these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to <span>\\({\\mathbb {Z}}/N{\\mathbb {Z}}\\)</span> extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimality and unique ergodicity of Veech 1969 type interval exchange transformations\",\"authors\":\"Sébastien Ferenczi, Pascal Hubert\",\"doi\":\"10.1007/s10711-024-00888-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give conditions for minimality of <span>\\\\({\\\\mathbb {Z}}/N{\\\\mathbb {Z}}\\\\)</span> extensions of a rotation of angle <span>\\\\(\\\\alpha \\\\)</span> with one marked point, solving the problem for any prime <i>N</i>: for <span>\\\\(N=2\\\\)</span>, these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to <span>\\\\({\\\\mathbb {Z}}/N{\\\\mathbb {Z}}\\\\)</span> extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00888-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00888-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了角度为 \(α \) 的旋转扩展的最小性条件,解决了任意素数 N 的问题:对于 \(N=2\),这些条件与维奇 1969 例题相对应,而对于维奇 1969 例题,我们还不知道必要条件和充分条件。我们还提供了一个对一般区间交换变换有效的最小性单词组合准则,它适用于具有任意标记点数的任意区间交换变换的 \({\mathbb {Z}}/N{mathbb {Z}}/)扩展。然后,当初始区间交换变换是线性递归的,并且有一个或两个标记点时,我们给出了这些扩展的唯一遍历性条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Minimality and unique ergodicity of Veech 1969 type interval exchange transformations

分享
查看原文
Minimality and unique ergodicity of Veech 1969 type interval exchange transformations

We give conditions for minimality of \({\mathbb {Z}}/N{\mathbb {Z}}\) extensions of a rotation of angle \(\alpha \) with one marked point, solving the problem for any prime N: for \(N=2\), these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to \({\mathbb {Z}}/N{\mathbb {Z}}\) extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信