{"title":"维奇 1969 型区间交换变换的最小性和唯一遍历性","authors":"Sébastien Ferenczi, Pascal Hubert","doi":"10.1007/s10711-024-00888-1","DOIUrl":null,"url":null,"abstract":"<p>We give conditions for minimality of <span>\\({\\mathbb {Z}}/N{\\mathbb {Z}}\\)</span> extensions of a rotation of angle <span>\\(\\alpha \\)</span> with one marked point, solving the problem for any prime <i>N</i>: for <span>\\(N=2\\)</span>, these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to <span>\\({\\mathbb {Z}}/N{\\mathbb {Z}}\\)</span> extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.\n</p>","PeriodicalId":55103,"journal":{"name":"Geometriae Dedicata","volume":"4 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimality and unique ergodicity of Veech 1969 type interval exchange transformations\",\"authors\":\"Sébastien Ferenczi, Pascal Hubert\",\"doi\":\"10.1007/s10711-024-00888-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give conditions for minimality of <span>\\\\({\\\\mathbb {Z}}/N{\\\\mathbb {Z}}\\\\)</span> extensions of a rotation of angle <span>\\\\(\\\\alpha \\\\)</span> with one marked point, solving the problem for any prime <i>N</i>: for <span>\\\\(N=2\\\\)</span>, these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to <span>\\\\({\\\\mathbb {Z}}/N{\\\\mathbb {Z}}\\\\)</span> extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.\\n</p>\",\"PeriodicalId\":55103,\"journal\":{\"name\":\"Geometriae Dedicata\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geometriae Dedicata\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00888-1\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometriae Dedicata","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00888-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Minimality and unique ergodicity of Veech 1969 type interval exchange transformations
We give conditions for minimality of \({\mathbb {Z}}/N{\mathbb {Z}}\) extensions of a rotation of angle \(\alpha \) with one marked point, solving the problem for any prime N: for \(N=2\), these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to \({\mathbb {Z}}/N{\mathbb {Z}}\) extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.
期刊介绍:
Geometriae Dedicata concentrates on geometry and its relationship to topology, group theory and the theory of dynamical systems.
Geometriae Dedicata aims to be a vehicle for excellent publications in geometry and related areas. Features of the journal will include:
A fast turn-around time for articles.
Special issues centered on specific topics.
All submitted papers should include some explanation of the context of the main results.
Geometriae Dedicata was founded in 1972 on the initiative of Hans Freudenthal in Utrecht, the Netherlands, who viewed geometry as a method rather than as a field. The present Board of Editors tries to continue in this spirit. The steady growth of the journal since its foundation is witness to the validity of the founder''s vision and to the success of the Editors'' mission.