{"title":"维奇 1969 型区间交换变换的最小性和唯一遍历性","authors":"Sébastien Ferenczi, Pascal Hubert","doi":"10.1007/s10711-024-00888-1","DOIUrl":null,"url":null,"abstract":"<p>We give conditions for minimality of <span>\\({\\mathbb {Z}}/N{\\mathbb {Z}}\\)</span> extensions of a rotation of angle <span>\\(\\alpha \\)</span> with one marked point, solving the problem for any prime <i>N</i>: for <span>\\(N=2\\)</span>, these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to <span>\\({\\mathbb {Z}}/N{\\mathbb {Z}}\\)</span> extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimality and unique ergodicity of Veech 1969 type interval exchange transformations\",\"authors\":\"Sébastien Ferenczi, Pascal Hubert\",\"doi\":\"10.1007/s10711-024-00888-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We give conditions for minimality of <span>\\\\({\\\\mathbb {Z}}/N{\\\\mathbb {Z}}\\\\)</span> extensions of a rotation of angle <span>\\\\(\\\\alpha \\\\)</span> with one marked point, solving the problem for any prime <i>N</i>: for <span>\\\\(N=2\\\\)</span>, these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to <span>\\\\({\\\\mathbb {Z}}/N{\\\\mathbb {Z}}\\\\)</span> extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00888-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00888-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Minimality and unique ergodicity of Veech 1969 type interval exchange transformations
We give conditions for minimality of \({\mathbb {Z}}/N{\mathbb {Z}}\) extensions of a rotation of angle \(\alpha \) with one marked point, solving the problem for any prime N: for \(N=2\), these correspond to the Veech 1969 examples, for which a necessary and sufficient condition was not known yet. We provide also a word combinatorial criterion of minimality valid for general interval exchange transformations, which applies to \({\mathbb {Z}}/N{\mathbb {Z}}\) extensions of any interval exchange transformation with any number of marked points. Then we give a condition for unique ergodicity of these extensions when the initial interval exchange transformation is linearly recurrent and there are one or two marked points.