瑟斯顿度量向投影填充流的扩展

Pub Date : 2024-05-06 DOI:10.1007/s10711-024-00914-2
Jenya Sapir
{"title":"瑟斯顿度量向投影填充流的扩展","authors":"Jenya Sapir","doi":"10.1007/s10711-024-00914-2","DOIUrl":null,"url":null,"abstract":"<p>We study the geometry of the space of projectivized filling geodesic currents <span>\\(\\mathbb {P}\\mathcal {C}_{fill}(S)\\)</span>. Bonahon showed that Teichmüller space, <span>\\(\\mathcal {T}(S)\\)</span> embeds into <span>\\(\\mathbb {P}\\mathcal {C}_{fill}(S)\\)</span>. We extend the symmetrized Thurston metric from <span>\\(\\mathcal {T}(S)\\)</span> to the entire (projectivized) space of filling currents, and we show that <span>\\(\\mathcal {T}(S)\\)</span> is isometrically embedded into the bigger space. Moreover, we show that there is no quasi-isometric projection back down to <span>\\(\\mathcal {T}(S)\\)</span>. Lastly, we study the geometry of a length-minimizing projection from <span>\\(\\mathbb {P}\\mathcal {C}_{fill}(S)\\)</span> to <span>\\(\\mathcal {T}(S)\\)</span> defined previously by Hensel and the author.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of the Thurston metric to projective filling currents\",\"authors\":\"Jenya Sapir\",\"doi\":\"10.1007/s10711-024-00914-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the geometry of the space of projectivized filling geodesic currents <span>\\\\(\\\\mathbb {P}\\\\mathcal {C}_{fill}(S)\\\\)</span>. Bonahon showed that Teichmüller space, <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> embeds into <span>\\\\(\\\\mathbb {P}\\\\mathcal {C}_{fill}(S)\\\\)</span>. We extend the symmetrized Thurston metric from <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> to the entire (projectivized) space of filling currents, and we show that <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> is isometrically embedded into the bigger space. Moreover, we show that there is no quasi-isometric projection back down to <span>\\\\(\\\\mathcal {T}(S)\\\\)</span>. Lastly, we study the geometry of a length-minimizing projection from <span>\\\\(\\\\mathbb {P}\\\\mathcal {C}_{fill}(S)\\\\)</span> to <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> defined previously by Hensel and the author.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00914-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00914-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了投影填充测地线流空间的几何(\(\mathbb {P}\mathcal {C}_{fill}(S)\) )。博纳洪证明了泰希米勒空间(Thichmüller space, \(\mathcal {T}(S)\) embeds into \(\mathbb {P}\mathcal {C}_{fill}(S)\).我们将对称的瑟斯顿度量从 \(\mathcal {T}(S)\) 扩展到整个(投影化的)填充流空间,并证明 \(\mathcal {T}(S)\) 等距地嵌入到更大的空间中。此外,我们还证明不存在回到 \(\mathcal {T}(S)\) 的准等距投影。最后,我们研究了亨塞尔和作者之前定义的从\(\mathbb {P}\mathcal {C}_{fill}(S)\) 到\(\mathcal {T}(S)\) 的长度最小化投影的几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

An extension of the Thurston metric to projective filling currents

分享
查看原文
An extension of the Thurston metric to projective filling currents

We study the geometry of the space of projectivized filling geodesic currents \(\mathbb {P}\mathcal {C}_{fill}(S)\). Bonahon showed that Teichmüller space, \(\mathcal {T}(S)\) embeds into \(\mathbb {P}\mathcal {C}_{fill}(S)\). We extend the symmetrized Thurston metric from \(\mathcal {T}(S)\) to the entire (projectivized) space of filling currents, and we show that \(\mathcal {T}(S)\) is isometrically embedded into the bigger space. Moreover, we show that there is no quasi-isometric projection back down to \(\mathcal {T}(S)\). Lastly, we study the geometry of a length-minimizing projection from \(\mathbb {P}\mathcal {C}_{fill}(S)\) to \(\mathcal {T}(S)\) defined previously by Hensel and the author.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信