{"title":"瑟斯顿度量向投影填充流的扩展","authors":"Jenya Sapir","doi":"10.1007/s10711-024-00914-2","DOIUrl":null,"url":null,"abstract":"<p>We study the geometry of the space of projectivized filling geodesic currents <span>\\(\\mathbb {P}\\mathcal {C}_{fill}(S)\\)</span>. Bonahon showed that Teichmüller space, <span>\\(\\mathcal {T}(S)\\)</span> embeds into <span>\\(\\mathbb {P}\\mathcal {C}_{fill}(S)\\)</span>. We extend the symmetrized Thurston metric from <span>\\(\\mathcal {T}(S)\\)</span> to the entire (projectivized) space of filling currents, and we show that <span>\\(\\mathcal {T}(S)\\)</span> is isometrically embedded into the bigger space. Moreover, we show that there is no quasi-isometric projection back down to <span>\\(\\mathcal {T}(S)\\)</span>. Lastly, we study the geometry of a length-minimizing projection from <span>\\(\\mathbb {P}\\mathcal {C}_{fill}(S)\\)</span> to <span>\\(\\mathcal {T}(S)\\)</span> defined previously by Hensel and the author.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An extension of the Thurston metric to projective filling currents\",\"authors\":\"Jenya Sapir\",\"doi\":\"10.1007/s10711-024-00914-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the geometry of the space of projectivized filling geodesic currents <span>\\\\(\\\\mathbb {P}\\\\mathcal {C}_{fill}(S)\\\\)</span>. Bonahon showed that Teichmüller space, <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> embeds into <span>\\\\(\\\\mathbb {P}\\\\mathcal {C}_{fill}(S)\\\\)</span>. We extend the symmetrized Thurston metric from <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> to the entire (projectivized) space of filling currents, and we show that <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> is isometrically embedded into the bigger space. Moreover, we show that there is no quasi-isometric projection back down to <span>\\\\(\\\\mathcal {T}(S)\\\\)</span>. Lastly, we study the geometry of a length-minimizing projection from <span>\\\\(\\\\mathbb {P}\\\\mathcal {C}_{fill}(S)\\\\)</span> to <span>\\\\(\\\\mathcal {T}(S)\\\\)</span> defined previously by Hensel and the author.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10711-024-00914-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10711-024-00914-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An extension of the Thurston metric to projective filling currents
We study the geometry of the space of projectivized filling geodesic currents \(\mathbb {P}\mathcal {C}_{fill}(S)\). Bonahon showed that Teichmüller space, \(\mathcal {T}(S)\) embeds into \(\mathbb {P}\mathcal {C}_{fill}(S)\). We extend the symmetrized Thurston metric from \(\mathcal {T}(S)\) to the entire (projectivized) space of filling currents, and we show that \(\mathcal {T}(S)\) is isometrically embedded into the bigger space. Moreover, we show that there is no quasi-isometric projection back down to \(\mathcal {T}(S)\). Lastly, we study the geometry of a length-minimizing projection from \(\mathbb {P}\mathcal {C}_{fill}(S)\) to \(\mathcal {T}(S)\) defined previously by Hensel and the author.