{"title":"应用于长期太阳黑子区域的极值理论","authors":"Rui Zhang, Yan-Qing Chen, Shu-Guang Zeng, Sheng Zheng, Yan-Shan Xiao, Lin-Hua Deng, Xiang-Yun Zeng, Yao Huang","doi":"10.1007/s12036-024-09999-3","DOIUrl":null,"url":null,"abstract":"<div><p>Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data in 1874–2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods, while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar cycles will be stronger than that of the 24th solar cycle.</p></div>","PeriodicalId":610,"journal":{"name":"Journal of Astrophysics and Astronomy","volume":"45 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extreme value theory applied to long-term sunspot areas\",\"authors\":\"Rui Zhang, Yan-Qing Chen, Shu-Guang Zeng, Sheng Zheng, Yan-Shan Xiao, Lin-Hua Deng, Xiang-Yun Zeng, Yao Huang\",\"doi\":\"10.1007/s12036-024-09999-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data in 1874–2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods, while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar cycles will be stronger than that of the 24th solar cycle.</p></div>\",\"PeriodicalId\":610,\"journal\":{\"name\":\"Journal of Astrophysics and Astronomy\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astrophysics and Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12036-024-09999-3\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astrophysics and Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s12036-024-09999-3","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Extreme value theory applied to long-term sunspot areas
Solar activity, such as sunspots and flares, has a great impact on humans, living beings, and technologies in the whole world. Changes in sunspots will influence high-frequency and space-navigation radio communications. Based on the full-disk, southern and northern hemispheres sunspot areas (SAs) data in 1874–2023 from the Royal Observatory, Greenwich (RGO) USAF/NOAA, extreme value theory (EVT) is applied to predict the trend of the 25th and 26th solar cycles (SCs) in this work. Two methods with EVT, the block maxima (BM) approach and the peaks-over-threshold (POT) approach, are employed to research solar extreme events. The former method focuses on each block’s maximum sunspot areas value and is applied for the generalized extreme value (GEV) distribution. The latter method aims to select the extreme values exceeding a threshold value and is used to obtain the generalized Pareto (GP) distribution. It is the first time that the EVT is applied on the sunspot areas data from the Royal Observatory, Greenwich (RGO) USAF/NOAA. The analysis indicates that the estimated 8-year return levels for sunspot areas are 5701 and 6258 using the two methods, while the estimated 19-year return levels are all 7165. This suggests that the trends of the 25th and 26th solar cycles will be stronger than that of the 24th solar cycle.
期刊介绍:
The journal publishes original research papers on all aspects of astrophysics and astronomy, including instrumentation, laboratory astrophysics, and cosmology. Critical reviews of topical fields are also published.
Articles submitted as letters will be considered.