{"title":"页岩储层中支撑裂缝伪阈值压力梯度的实验研究","authors":"Jidong Gao, Weiyao Zhu, Aishan Li, Yuexiang He, Liaoyuan Zhang, Debin Kong","doi":"10.1007/s13202-024-01791-x","DOIUrl":null,"url":null,"abstract":"<p>Pseudo threshold pressure gradient (PTPG) exists in the propped fractured reservoir, but its nonlinear flow law remains unclear. The effects of the mineral composition of shale and microstructure of fracturing fluid on PTPG were analyzed by X-ray diffraction and liquid nitrogen quick-freezing method. The results demonstrate that a proppant with a large particle size is more likely to form an effective flow channel and reduce liquid flow resistance, thus decreasing PTPG and increasing conductivity. The polymer fracturing fluid with rectangular microstructures significantly increased the PTPG supporting the fractured core. Experimental results show that the PTPG of the resin-coated sand-supported core in the fracturing fluid with a concentration of 1.2% is 245 times higher than that in the fracturing fluid with a concentration of 0.1% when the confining pressure is 5 MPa. Wetting hysteresis and the Jamin effect are responsible for the rise of PTPG in two-phase flow. The equivalent fracture width shows a good power function relationship with the PTPG. Thus, this study further explains the nonlinear flow behavior of reservoirs with fully propped fractures.</p>","PeriodicalId":16723,"journal":{"name":"Journal of Petroleum Exploration and Production Technology","volume":"56 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental study on the pseudo threshold pressure gradient of supported fractures in shale reservoirs\",\"authors\":\"Jidong Gao, Weiyao Zhu, Aishan Li, Yuexiang He, Liaoyuan Zhang, Debin Kong\",\"doi\":\"10.1007/s13202-024-01791-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Pseudo threshold pressure gradient (PTPG) exists in the propped fractured reservoir, but its nonlinear flow law remains unclear. The effects of the mineral composition of shale and microstructure of fracturing fluid on PTPG were analyzed by X-ray diffraction and liquid nitrogen quick-freezing method. The results demonstrate that a proppant with a large particle size is more likely to form an effective flow channel and reduce liquid flow resistance, thus decreasing PTPG and increasing conductivity. The polymer fracturing fluid with rectangular microstructures significantly increased the PTPG supporting the fractured core. Experimental results show that the PTPG of the resin-coated sand-supported core in the fracturing fluid with a concentration of 1.2% is 245 times higher than that in the fracturing fluid with a concentration of 0.1% when the confining pressure is 5 MPa. Wetting hysteresis and the Jamin effect are responsible for the rise of PTPG in two-phase flow. The equivalent fracture width shows a good power function relationship with the PTPG. Thus, this study further explains the nonlinear flow behavior of reservoirs with fully propped fractures.</p>\",\"PeriodicalId\":16723,\"journal\":{\"name\":\"Journal of Petroleum Exploration and Production Technology\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Petroleum Exploration and Production Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13202-024-01791-x\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Petroleum Exploration and Production Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13202-024-01791-x","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Experimental study on the pseudo threshold pressure gradient of supported fractures in shale reservoirs
Pseudo threshold pressure gradient (PTPG) exists in the propped fractured reservoir, but its nonlinear flow law remains unclear. The effects of the mineral composition of shale and microstructure of fracturing fluid on PTPG were analyzed by X-ray diffraction and liquid nitrogen quick-freezing method. The results demonstrate that a proppant with a large particle size is more likely to form an effective flow channel and reduce liquid flow resistance, thus decreasing PTPG and increasing conductivity. The polymer fracturing fluid with rectangular microstructures significantly increased the PTPG supporting the fractured core. Experimental results show that the PTPG of the resin-coated sand-supported core in the fracturing fluid with a concentration of 1.2% is 245 times higher than that in the fracturing fluid with a concentration of 0.1% when the confining pressure is 5 MPa. Wetting hysteresis and the Jamin effect are responsible for the rise of PTPG in two-phase flow. The equivalent fracture width shows a good power function relationship with the PTPG. Thus, this study further explains the nonlinear flow behavior of reservoirs with fully propped fractures.
期刊介绍:
The Journal of Petroleum Exploration and Production Technology is an international open access journal that publishes original and review articles as well as book reviews on leading edge studies in the field of petroleum engineering, petroleum geology and exploration geophysics and the implementation of related technologies to the development and management of oil and gas reservoirs from their discovery through their entire production cycle.
Focusing on:
Reservoir characterization and modeling
Unconventional oil and gas reservoirs
Geophysics: Acquisition and near surface
Geophysics Modeling and Imaging
Geophysics: Interpretation
Geophysics: Processing
Production Engineering
Formation Evaluation
Reservoir Management
Petroleum Geology
Enhanced Recovery
Geomechanics
Drilling
Completions
The Journal of Petroleum Exploration and Production Technology is committed to upholding the integrity of the scientific record. As a member of the Committee on Publication Ethics (COPE) the journal will follow the COPE guidelines on how to deal with potential acts of misconduct. Authors should refrain from misrepresenting research results which could damage the trust in the journal and ultimately the entire scientific endeavor. Maintaining integrity of the research and its presentation can be achieved by following the rules of good scientific practice as detailed here: https://www.springer.com/us/editorial-policies