{"title":"生存分析中的多个随机变化点在临床试验中的应用","authors":"Jianbo Xu","doi":"10.1007/s00362-023-01507-z","DOIUrl":null,"url":null,"abstract":"<p>There is often a presence of random change points (RCPs) with varying timing of hazard rate change among patients in survival analysis within oncology trials. This is in contrast to fixed change points in piecewise constant hazard models, where the timing of hazard rate change remains the same for all subjects. However, currently there is a lack of appropriate statistical methods to effectively tackle this particular issue. This article presents novel statistical methods that aim to characterize these complex survival models. These methods allow for the estimation of important features such as the probability of an event occurring and being censored, and the expected number of events within the clinical trial, prior to any specific time, and within specific time intervals. They also derive expected survival time and parametric expected survival and hazard functions for subjects with any finite number of RCPs. Simulation studies validate these methods and demonstrate their reliability and effectiveness. Real clinical data from an oncology trial is also used to apply these methods. The applications of these methods in oncology trials are extensive, including estimating hazard rates and rate parameters of RCPs, assessing treatment switching, delayed onset of immunotherapy, and subsequent anticancer therapies. They also have value in clinical trial planning, monitoring, and sample size adjustment. The expected parametric survival and hazard functions provide a thorough understanding of the behaviors and effects of RCPs in complex survival models.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"26 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple random change points in survival analysis with applications to clinical trials\",\"authors\":\"Jianbo Xu\",\"doi\":\"10.1007/s00362-023-01507-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is often a presence of random change points (RCPs) with varying timing of hazard rate change among patients in survival analysis within oncology trials. This is in contrast to fixed change points in piecewise constant hazard models, where the timing of hazard rate change remains the same for all subjects. However, currently there is a lack of appropriate statistical methods to effectively tackle this particular issue. This article presents novel statistical methods that aim to characterize these complex survival models. These methods allow for the estimation of important features such as the probability of an event occurring and being censored, and the expected number of events within the clinical trial, prior to any specific time, and within specific time intervals. They also derive expected survival time and parametric expected survival and hazard functions for subjects with any finite number of RCPs. Simulation studies validate these methods and demonstrate their reliability and effectiveness. Real clinical data from an oncology trial is also used to apply these methods. The applications of these methods in oncology trials are extensive, including estimating hazard rates and rate parameters of RCPs, assessing treatment switching, delayed onset of immunotherapy, and subsequent anticancer therapies. They also have value in clinical trial planning, monitoring, and sample size adjustment. The expected parametric survival and hazard functions provide a thorough understanding of the behaviors and effects of RCPs in complex survival models.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-023-01507-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-023-01507-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Multiple random change points in survival analysis with applications to clinical trials
There is often a presence of random change points (RCPs) with varying timing of hazard rate change among patients in survival analysis within oncology trials. This is in contrast to fixed change points in piecewise constant hazard models, where the timing of hazard rate change remains the same for all subjects. However, currently there is a lack of appropriate statistical methods to effectively tackle this particular issue. This article presents novel statistical methods that aim to characterize these complex survival models. These methods allow for the estimation of important features such as the probability of an event occurring and being censored, and the expected number of events within the clinical trial, prior to any specific time, and within specific time intervals. They also derive expected survival time and parametric expected survival and hazard functions for subjects with any finite number of RCPs. Simulation studies validate these methods and demonstrate their reliability and effectiveness. Real clinical data from an oncology trial is also used to apply these methods. The applications of these methods in oncology trials are extensive, including estimating hazard rates and rate parameters of RCPs, assessing treatment switching, delayed onset of immunotherapy, and subsequent anticancer therapies. They also have value in clinical trial planning, monitoring, and sample size adjustment. The expected parametric survival and hazard functions provide a thorough understanding of the behaviors and effects of RCPs in complex survival models.
期刊介绍:
The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.