通过电图仪(EPG)追踪吸汁害虫的取食机制

IF 1 3区 农林科学 Q3 ENTOMOLOGY
Usama Bin Tayyab, Muhammad Jalal Arif, Muhammad Dildar Gogi, Shamim Akhtar, Muhammad Jawad Abdullah, Faisal Ali
{"title":"通过电图仪(EPG)追踪吸汁害虫的取食机制","authors":"Usama Bin Tayyab, Muhammad Jalal Arif, Muhammad Dildar Gogi, Shamim Akhtar, Muhammad Jawad Abdullah, Faisal Ali","doi":"10.1007/s10905-024-09850-1","DOIUrl":null,"url":null,"abstract":"<p>Among insect pests of field crops, sap-sucking insects are a major threat to all agricultural commodities. The sucking insect pests damage the crops by sucking the sap thereby weakening the plants, and transmitting several bacterial, fungal and viral pathogens. The electrical penetration graph (EPG) has emerged as a highly valuable tool for analyzing the feeding behavior of sap-sucking insects on a broad range of host plants, examining pathogen transmission, evaluating the efficacy of feeding-restricting insecticides, plant responses to insect attack, and insect morphology and physiology. The EPG generates waveforms that facilitate the observation of probing behavior of the insects, enabling them to gain insights into the mechanisms and extent of underlying feeding. The integration of multiple complementary techniques, including histological analysis, video tracking, electron microscopy, elicitor proteins, and gene editing, has yielded significant advancements in the management of sap-sucking insects. These techniques have provided a deeper understanding of the underlying mechanisms and interactions involved in insect feeding behaviors, offering new opportunities for targeted interventions and improved pest control strategies. The EPG has been employed since the last five decades, yet needs to be investigated at higher levels with modernization. In spite of having a wide application, it still faces certain limitations, challenges, and research gaps that require addressing for enabling the scientists in novel findings. This review paper provides a historical prospect, the applications and technical intricacies of EPG.</p>","PeriodicalId":16180,"journal":{"name":"Journal of Insect Behavior","volume":"10 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tracking the Feeding Mechanism of Sap-Sucking Insect-Pests Through Electropenetrography (EPG)\",\"authors\":\"Usama Bin Tayyab, Muhammad Jalal Arif, Muhammad Dildar Gogi, Shamim Akhtar, Muhammad Jawad Abdullah, Faisal Ali\",\"doi\":\"10.1007/s10905-024-09850-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Among insect pests of field crops, sap-sucking insects are a major threat to all agricultural commodities. The sucking insect pests damage the crops by sucking the sap thereby weakening the plants, and transmitting several bacterial, fungal and viral pathogens. The electrical penetration graph (EPG) has emerged as a highly valuable tool for analyzing the feeding behavior of sap-sucking insects on a broad range of host plants, examining pathogen transmission, evaluating the efficacy of feeding-restricting insecticides, plant responses to insect attack, and insect morphology and physiology. The EPG generates waveforms that facilitate the observation of probing behavior of the insects, enabling them to gain insights into the mechanisms and extent of underlying feeding. The integration of multiple complementary techniques, including histological analysis, video tracking, electron microscopy, elicitor proteins, and gene editing, has yielded significant advancements in the management of sap-sucking insects. These techniques have provided a deeper understanding of the underlying mechanisms and interactions involved in insect feeding behaviors, offering new opportunities for targeted interventions and improved pest control strategies. The EPG has been employed since the last five decades, yet needs to be investigated at higher levels with modernization. In spite of having a wide application, it still faces certain limitations, challenges, and research gaps that require addressing for enabling the scientists in novel findings. This review paper provides a historical prospect, the applications and technical intricacies of EPG.</p>\",\"PeriodicalId\":16180,\"journal\":{\"name\":\"Journal of Insect Behavior\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Insect Behavior\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10905-024-09850-1\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Insect Behavior","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10905-024-09850-1","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在田间作物的害虫中,吸汁昆虫是所有农产品的主要威胁。吸汁害虫通过吸食汁液损害作物,从而削弱植物的生长,并传播多种细菌、真菌和病毒病原体。电穿透图(EPG)已成为一种非常有价值的工具,可用于分析吸汁昆虫在多种寄主植物上的取食行为、研究病原体传播、评估限制取食的杀虫剂的效果、植物对昆虫攻击的反应以及昆虫的形态和生理。EPG 生成的波形便于观察昆虫的探测行为,使他们能够深入了解潜在的取食机制和程度。组织学分析、视频跟踪、电子显微镜、诱导蛋白和基因编辑等多种互补技术的整合,在吸汁昆虫的管理方面取得了重大进展。这些技术使人们对昆虫取食行为的内在机制和相互作用有了更深入的了解,为采取有针对性的干预措施和改进害虫控制策略提供了新的机会。EPG 自过去五十年来一直在使用,但随着现代化的发展,还需要进行更高层次的研究。尽管应用广泛,但它仍然面临着一些限制、挑战和研究空白,需要科学家们加以解决,以获得新的发现。本综述论文介绍了 EPG 的历史前景、应用和复杂技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tracking the Feeding Mechanism of Sap-Sucking Insect-Pests Through Electropenetrography (EPG)

Among insect pests of field crops, sap-sucking insects are a major threat to all agricultural commodities. The sucking insect pests damage the crops by sucking the sap thereby weakening the plants, and transmitting several bacterial, fungal and viral pathogens. The electrical penetration graph (EPG) has emerged as a highly valuable tool for analyzing the feeding behavior of sap-sucking insects on a broad range of host plants, examining pathogen transmission, evaluating the efficacy of feeding-restricting insecticides, plant responses to insect attack, and insect morphology and physiology. The EPG generates waveforms that facilitate the observation of probing behavior of the insects, enabling them to gain insights into the mechanisms and extent of underlying feeding. The integration of multiple complementary techniques, including histological analysis, video tracking, electron microscopy, elicitor proteins, and gene editing, has yielded significant advancements in the management of sap-sucking insects. These techniques have provided a deeper understanding of the underlying mechanisms and interactions involved in insect feeding behaviors, offering new opportunities for targeted interventions and improved pest control strategies. The EPG has been employed since the last five decades, yet needs to be investigated at higher levels with modernization. In spite of having a wide application, it still faces certain limitations, challenges, and research gaps that require addressing for enabling the scientists in novel findings. This review paper provides a historical prospect, the applications and technical intricacies of EPG.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Insect Behavior
Journal of Insect Behavior 生物-昆虫学
CiteScore
1.50
自引率
0.00%
发文量
16
审稿时长
6-12 weeks
期刊介绍: Journal of Insect Behavior offers peer-reviewed research articles and short critical reviews on all aspects of the behavior of insects and other terrestrial arthropods such as spiders, centipedes, millipedes, and isopods. An internationally renowned editorial board discusses technological innovations and new developments in the field, emphasizing topics such as behavioral ecology, motor patterns and recognition, and genetic determinants.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信