嵌套对称拉丁超立方设计

IF 1.2 3区 数学 Q2 STATISTICS & PROBABILITY
Xiaodi Wang, Hengzhen Huang
{"title":"嵌套对称拉丁超立方设计","authors":"Xiaodi Wang, Hengzhen Huang","doi":"10.1007/s00362-024-01556-y","DOIUrl":null,"url":null,"abstract":"<p>Symmetrical global sensitivity analysis (SGSA) can aid practitioners in reducing the model complexity by identifying symmetries within the model. In this paper, we propose a nested symmetrical Latin hypercube design (NSLHD) for implementing SGSA in a sequential manner. By combining the strengths of the nested Latin hypercube design and symmetrical design, the proposed design allows for the implementation of SGSA without the need to pre-determine the sample size of the experiment. We develop a random sampling procedure and an efficient sequential optimization algorithm to construct flexible NSLHDs in terms of runs and factors. Sampling properties of the constructed designs are studied. Numerical examples are given to demonstrate the effectiveness of the NSLHD for designing sequential sensitivity analysis.</p>","PeriodicalId":51166,"journal":{"name":"Statistical Papers","volume":"112 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nested symmetrical Latin hypercube designs\",\"authors\":\"Xiaodi Wang, Hengzhen Huang\",\"doi\":\"10.1007/s00362-024-01556-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Symmetrical global sensitivity analysis (SGSA) can aid practitioners in reducing the model complexity by identifying symmetries within the model. In this paper, we propose a nested symmetrical Latin hypercube design (NSLHD) for implementing SGSA in a sequential manner. By combining the strengths of the nested Latin hypercube design and symmetrical design, the proposed design allows for the implementation of SGSA without the need to pre-determine the sample size of the experiment. We develop a random sampling procedure and an efficient sequential optimization algorithm to construct flexible NSLHDs in terms of runs and factors. Sampling properties of the constructed designs are studied. Numerical examples are given to demonstrate the effectiveness of the NSLHD for designing sequential sensitivity analysis.</p>\",\"PeriodicalId\":51166,\"journal\":{\"name\":\"Statistical Papers\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Papers\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00362-024-01556-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Papers","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00362-024-01556-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对称全局敏感性分析(SGSA)可以通过识别模型内部的对称性来帮助从业人员降低模型的复杂性。在本文中,我们提出了一种嵌套对称拉丁超立方设计(NSLHD),用于以顺序方式实施 SGSA。通过结合嵌套拉丁超立方设计和对称设计的优势,所提出的设计可以在无需预先确定实验样本大小的情况下实施 SGSA。我们开发了一种随机抽样程序和一种高效的序列优化算法,以在运行和因子方面构建灵活的 NSLHD。我们研究了所构建设计的抽样特性。我们给出了数值示例,以证明 NSLHD 在设计顺序敏感性分析方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nested symmetrical Latin hypercube designs

Nested symmetrical Latin hypercube designs

Symmetrical global sensitivity analysis (SGSA) can aid practitioners in reducing the model complexity by identifying symmetries within the model. In this paper, we propose a nested symmetrical Latin hypercube design (NSLHD) for implementing SGSA in a sequential manner. By combining the strengths of the nested Latin hypercube design and symmetrical design, the proposed design allows for the implementation of SGSA without the need to pre-determine the sample size of the experiment. We develop a random sampling procedure and an efficient sequential optimization algorithm to construct flexible NSLHDs in terms of runs and factors. Sampling properties of the constructed designs are studied. Numerical examples are given to demonstrate the effectiveness of the NSLHD for designing sequential sensitivity analysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Papers
Statistical Papers 数学-统计学与概率论
CiteScore
2.80
自引率
7.70%
发文量
95
审稿时长
6-12 weeks
期刊介绍: The journal Statistical Papers addresses itself to all persons and organizations that have to deal with statistical methods in their own field of work. It attempts to provide a forum for the presentation and critical assessment of statistical methods, in particular for the discussion of their methodological foundations as well as their potential applications. Methods that have broad applications will be preferred. However, special attention is given to those statistical methods which are relevant to the economic and social sciences. In addition to original research papers, readers will find survey articles, short notes, reports on statistical software, problem section, and book reviews.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信