二次多项式图的参数

IF 0.6 4区 数学 Q3 MATHEMATICS
Allen Herman, Roghayeh Maleki
{"title":"二次多项式图的参数","authors":"Allen Herman, Roghayeh Maleki","doi":"10.1007/s00373-024-02789-2","DOIUrl":null,"url":null,"abstract":"<p>Fiol has characterized quotient-polynomial graphs as precisely the connected graphs whose adjacency matrix generates the adjacency algebra of a symmetric association scheme. We show that a collection of non-negative integer parameters of size <span>\\(d + \\frac{d(d-1)}{2}\\)</span> is adequate for describing symmetric association schemes of class <i>d</i> that are generated by the adjacency matrix of their first non-trivial relation. We use this to generate a database of the corresponding quotient-polynomial graphs that have small valency and up to 6 classes, and among these find new feasible parameter sets for symmetric association schemes with noncyclotomic eigenvalues.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"44 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters of Quotient-Polynomial Graphs\",\"authors\":\"Allen Herman, Roghayeh Maleki\",\"doi\":\"10.1007/s00373-024-02789-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fiol has characterized quotient-polynomial graphs as precisely the connected graphs whose adjacency matrix generates the adjacency algebra of a symmetric association scheme. We show that a collection of non-negative integer parameters of size <span>\\\\(d + \\\\frac{d(d-1)}{2}\\\\)</span> is adequate for describing symmetric association schemes of class <i>d</i> that are generated by the adjacency matrix of their first non-trivial relation. We use this to generate a database of the corresponding quotient-polynomial graphs that have small valency and up to 6 classes, and among these find new feasible parameter sets for symmetric association schemes with noncyclotomic eigenvalues.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02789-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02789-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Fiol 将商多项式图描述为其邻接矩阵生成对称关联方案邻接代数的连通图。我们证明,大小为 \(d + \frac{d(d-1)}{2}\) 的非负整数参数集合足以描述由其第一个非三重关系的邻接矩阵生成的 d 类对称关联方案。我们利用这一点生成了一个相应的商多项式图数据库,这些图具有较小的价数和最多 6 个类别,并在其中为具有非循环特征值的对称关联方案找到了新的可行参数集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Parameters of Quotient-Polynomial Graphs

Fiol has characterized quotient-polynomial graphs as precisely the connected graphs whose adjacency matrix generates the adjacency algebra of a symmetric association scheme. We show that a collection of non-negative integer parameters of size \(d + \frac{d(d-1)}{2}\) is adequate for describing symmetric association schemes of class d that are generated by the adjacency matrix of their first non-trivial relation. We use this to generate a database of the corresponding quotient-polynomial graphs that have small valency and up to 6 classes, and among these find new feasible parameter sets for symmetric association schemes with noncyclotomic eigenvalues.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信