{"title":"二次多项式图的参数","authors":"Allen Herman, Roghayeh Maleki","doi":"10.1007/s00373-024-02789-2","DOIUrl":null,"url":null,"abstract":"<p>Fiol has characterized quotient-polynomial graphs as precisely the connected graphs whose adjacency matrix generates the adjacency algebra of a symmetric association scheme. We show that a collection of non-negative integer parameters of size <span>\\(d + \\frac{d(d-1)}{2}\\)</span> is adequate for describing symmetric association schemes of class <i>d</i> that are generated by the adjacency matrix of their first non-trivial relation. We use this to generate a database of the corresponding quotient-polynomial graphs that have small valency and up to 6 classes, and among these find new feasible parameter sets for symmetric association schemes with noncyclotomic eigenvalues.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parameters of Quotient-Polynomial Graphs\",\"authors\":\"Allen Herman, Roghayeh Maleki\",\"doi\":\"10.1007/s00373-024-02789-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fiol has characterized quotient-polynomial graphs as precisely the connected graphs whose adjacency matrix generates the adjacency algebra of a symmetric association scheme. We show that a collection of non-negative integer parameters of size <span>\\\\(d + \\\\frac{d(d-1)}{2}\\\\)</span> is adequate for describing symmetric association schemes of class <i>d</i> that are generated by the adjacency matrix of their first non-trivial relation. We use this to generate a database of the corresponding quotient-polynomial graphs that have small valency and up to 6 classes, and among these find new feasible parameter sets for symmetric association schemes with noncyclotomic eigenvalues.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02789-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02789-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Fiol 将商多项式图描述为其邻接矩阵生成对称关联方案邻接代数的连通图。我们证明,大小为 \(d + \frac{d(d-1)}{2}\) 的非负整数参数集合足以描述由其第一个非三重关系的邻接矩阵生成的 d 类对称关联方案。我们利用这一点生成了一个相应的商多项式图数据库,这些图具有较小的价数和最多 6 个类别,并在其中为具有非循环特征值的对称关联方案找到了新的可行参数集。
Fiol has characterized quotient-polynomial graphs as precisely the connected graphs whose adjacency matrix generates the adjacency algebra of a symmetric association scheme. We show that a collection of non-negative integer parameters of size \(d + \frac{d(d-1)}{2}\) is adequate for describing symmetric association schemes of class d that are generated by the adjacency matrix of their first non-trivial relation. We use this to generate a database of the corresponding quotient-polynomial graphs that have small valency and up to 6 classes, and among these find new feasible parameter sets for symmetric association schemes with noncyclotomic eigenvalues.