使用浮点压缩的 H 矩阵-矢量乘法性能

Ronald Kriemann
{"title":"使用浮点压缩的 H 矩阵-矢量乘法性能","authors":"Ronald Kriemann","doi":"arxiv-2405.03456","DOIUrl":null,"url":null,"abstract":"Matrix-vector multiplication forms the basis of many iterative solution\nalgorithms and as such is an important algorithm also for hierarchical\nmatrices. However, due to its low computational intensity, its performance is\ntypically limited by the available memory bandwidth. By optimizing the storage\nrepresentation of the data within such matrices, this limitation can be lifted\nand the performance increased. This applies not only to hierarchical matrices\nbut for also for other low-rank approximation schemes, e.g. block low-rank\nmatrices.","PeriodicalId":501256,"journal":{"name":"arXiv - CS - Mathematical Software","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Performance of H-Matrix-Vector Multiplication with Floating Point Compression\",\"authors\":\"Ronald Kriemann\",\"doi\":\"arxiv-2405.03456\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Matrix-vector multiplication forms the basis of many iterative solution\\nalgorithms and as such is an important algorithm also for hierarchical\\nmatrices. However, due to its low computational intensity, its performance is\\ntypically limited by the available memory bandwidth. By optimizing the storage\\nrepresentation of the data within such matrices, this limitation can be lifted\\nand the performance increased. This applies not only to hierarchical matrices\\nbut for also for other low-rank approximation schemes, e.g. block low-rank\\nmatrices.\",\"PeriodicalId\":501256,\"journal\":{\"name\":\"arXiv - CS - Mathematical Software\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Mathematical Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03456\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Mathematical Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

矩阵向量乘法是许多迭代求解算法的基础,因此也是分层矩阵的重要算法。然而,由于其计算强度较低,其性能通常受到可用内存带宽的限制。通过优化此类矩阵中数据的存储表示,可以解除这种限制并提高性能。这不仅适用于分层矩阵,也适用于其他低秩近似方案,如块低秩矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of H-Matrix-Vector Multiplication with Floating Point Compression
Matrix-vector multiplication forms the basis of many iterative solution algorithms and as such is an important algorithm also for hierarchical matrices. However, due to its low computational intensity, its performance is typically limited by the available memory bandwidth. By optimizing the storage representation of the data within such matrices, this limitation can be lifted and the performance increased. This applies not only to hierarchical matrices but for also for other low-rank approximation schemes, e.g. block low-rank matrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信