加热液体薄膜表面的热传导增强和细流的相互作用

IF 1 4区 物理与天体物理 Q4 PHYSICS, APPLIED
E. A. Chinnov
{"title":"加热液体薄膜表面的热传导增强和细流的相互作用","authors":"E. A. Chinnov","doi":"10.1134/s0018151x2303015x","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The flow of an aqueous film along a vertical heater was studied for Reynolds numbers of 33, 50, and 105 and initial temperatures <i>T</i><sub>0</sub> = 15, 23, 30, and 40°С. It was shown that the amplitudes of the zigzag motion of the rivulets increased with increasing heat flux density. The most intensive growth of amplitudes was observed with the development of thermocapillary instability in the upper part of the heater. For high heat fluxes, when the amplitude of the zigzag motion reached a sufficiently large value, interaction of the rivulets began. Several types of interaction of rivulets on the surface of the heated liquid film were distinguished. It was shown that the appearance of a thermocapillary structure in the upper part of the heater led to movement of rivulets and an increase in the heat transfer intensity.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heat Transfer Enhancement and Interaction of Rivulets on the Surface of a Heated Liquid Film\",\"authors\":\"E. A. Chinnov\",\"doi\":\"10.1134/s0018151x2303015x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The flow of an aqueous film along a vertical heater was studied for Reynolds numbers of 33, 50, and 105 and initial temperatures <i>T</i><sub>0</sub> = 15, 23, 30, and 40°С. It was shown that the amplitudes of the zigzag motion of the rivulets increased with increasing heat flux density. The most intensive growth of amplitudes was observed with the development of thermocapillary instability in the upper part of the heater. For high heat fluxes, when the amplitude of the zigzag motion reached a sufficiently large value, interaction of the rivulets began. Several types of interaction of rivulets on the surface of the heated liquid film were distinguished. It was shown that the appearance of a thermocapillary structure in the upper part of the heater led to movement of rivulets and an increase in the heat transfer intensity.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x2303015x\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x2303015x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在雷诺数为 33、50 和 105 以及初始温度 T0 = 15、23、30 和 40°С 时,研究了水膜沿垂直加热器的流动。结果表明,随着热通量密度的增加,涡流的 "之 "字形运动幅度也随之增大。在加热器上部出现热毛细管不稳定性时,振幅增长最为明显。在热通量较高的情况下,当之字形运动的振幅达到足够大的值时,涡流开始相互作用。受热液膜表面上的微流相互作用分为几种类型。研究表明,加热器上部热毛细管结构的出现导致了微流的运动和传热强度的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Heat Transfer Enhancement and Interaction of Rivulets on the Surface of a Heated Liquid Film

Heat Transfer Enhancement and Interaction of Rivulets on the Surface of a Heated Liquid Film

Abstract

The flow of an aqueous film along a vertical heater was studied for Reynolds numbers of 33, 50, and 105 and initial temperatures T0 = 15, 23, 30, and 40°С. It was shown that the amplitudes of the zigzag motion of the rivulets increased with increasing heat flux density. The most intensive growth of amplitudes was observed with the development of thermocapillary instability in the upper part of the heater. For high heat fluxes, when the amplitude of the zigzag motion reached a sufficiently large value, interaction of the rivulets began. Several types of interaction of rivulets on the surface of the heated liquid film were distinguished. It was shown that the appearance of a thermocapillary structure in the upper part of the heater led to movement of rivulets and an increase in the heat transfer intensity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature
High Temperature 物理-物理:应用
CiteScore
1.50
自引率
40.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信