{"title":"圆锥曲线点-线枚举问题的闭式解法","authors":"Yang Guo","doi":"10.1007/s00373-024-02793-6","DOIUrl":null,"url":null,"abstract":"<p>We use the reciprocal transformation to propose the closed-form solutions to the conics through <i>m</i> points and tangent to <i>n</i> lines satisfying <span>\\(m+n=5\\)</span> in general position. We also derive the algebraic and geometric necessary and sufficient conditions for the non-degenerate real conics.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"29 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Closed-Form Solution of Conic in Point-Line Enumerative Problem of Conic\",\"authors\":\"Yang Guo\",\"doi\":\"10.1007/s00373-024-02793-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We use the reciprocal transformation to propose the closed-form solutions to the conics through <i>m</i> points and tangent to <i>n</i> lines satisfying <span>\\\\(m+n=5\\\\)</span> in general position. We also derive the algebraic and geometric necessary and sufficient conditions for the non-degenerate real conics.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02793-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02793-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们利用倒易变换提出了通过 m 个点、与 n 条直线相切、满足 \(m+n=5\) 的圆锥在一般位置上的闭式解。我们还推导出了非退化实圆锥的代数和几何必要条件和充分条件。
Closed-Form Solution of Conic in Point-Line Enumerative Problem of Conic
We use the reciprocal transformation to propose the closed-form solutions to the conics through m points and tangent to n lines satisfying \(m+n=5\) in general position. We also derive the algebraic and geometric necessary and sufficient conditions for the non-degenerate real conics.
期刊介绍:
Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.