暗激子对聚乙炔电吸收光谱的影响

Jaspal Singh Bola, Ryan M. Stolley, Prashanna Poudel, Joel S. Miller, Christoph Boheme, Z. Valy Vardeny
{"title":"暗激子对聚乙炔电吸收光谱的影响","authors":"Jaspal Singh Bola, Ryan M. Stolley, Prashanna Poudel, Joel S. Miller, Christoph Boheme, Z. Valy Vardeny","doi":"arxiv-2405.03012","DOIUrl":null,"url":null,"abstract":"This study revisits the electroabsorption (EA) spectrum of polyacetylene, as\nfunctions of the electric field strength, isomerization degree, and light\npolarization states. The EA spectrum of $cis$-$(CH)_x$ reveals an oscillatory\nfeature that follows the Stark shift-related first derivative of the materials\nabsorption spectrum that contains v(0-1) and v(0-2) sidebands of the excited\n$C=C$ stretching vibration that agrees well with the Raman spectrum. EA\nspectrum of $trans $-$(CH)_x$ does not match the first derivative of the\nmaterials absorption spectrum, and the phonon sideband frequency does not agree\nwith the RS spectrum. EA spectrum of $trans $-$(CH)_x$ reveals a band below the\nfirst allowed $1B_u$ exciton. We interpret this feature as due to the electric\nfield activated even-parity dark (forbidden) exciton, namely $mA_g$ ($m >1$),\nshowing that the nonluminescent $trans $-$(CH)_x$ is due to the reverse order\nof the excited states, where a dark $mA_g$ exciton lies below the allowed\n$1B_u$ exciton. This agrees with the unusual phonon sideband in $trans\n$-$(CH)_x$ absorption, since the excited state attenuation caused by the fast\ninternal conversion from $1B_u$ to $mA_g$ influences the apparent frequency\nthat determines the phonon sideband. Consequently, from the EA and RS spectra\nwe estimate the $1B_u$ lifetime in $trans $-$(CH)_x$ to be $\\sim 30$ fs.\nIntegrated EA spectrum of $trans $-$(CH)_x$ shows a traditional Huang-Rhys type\nseries with a relaxation parameter, $S \\sim 0.5$. This indicates that the EA\nspectrum of the $trans $ isomer is also determined by a Stark shift related to\nthe first derivative of the absorption spectrum, but preferentially for the\nlongest chains in the films chain lengths distribution. This is due to the\n$N^3$ response of the non-linear susceptibility, $\\chi^{(3)}$ ($\\sim$EA),\ndependence on the chain length having $N$ monomers.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"49 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The influence of dark excitons on the electroabsorption spectrum of polyacetylene\",\"authors\":\"Jaspal Singh Bola, Ryan M. Stolley, Prashanna Poudel, Joel S. Miller, Christoph Boheme, Z. Valy Vardeny\",\"doi\":\"arxiv-2405.03012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study revisits the electroabsorption (EA) spectrum of polyacetylene, as\\nfunctions of the electric field strength, isomerization degree, and light\\npolarization states. The EA spectrum of $cis$-$(CH)_x$ reveals an oscillatory\\nfeature that follows the Stark shift-related first derivative of the materials\\nabsorption spectrum that contains v(0-1) and v(0-2) sidebands of the excited\\n$C=C$ stretching vibration that agrees well with the Raman spectrum. EA\\nspectrum of $trans $-$(CH)_x$ does not match the first derivative of the\\nmaterials absorption spectrum, and the phonon sideband frequency does not agree\\nwith the RS spectrum. EA spectrum of $trans $-$(CH)_x$ reveals a band below the\\nfirst allowed $1B_u$ exciton. We interpret this feature as due to the electric\\nfield activated even-parity dark (forbidden) exciton, namely $mA_g$ ($m >1$),\\nshowing that the nonluminescent $trans $-$(CH)_x$ is due to the reverse order\\nof the excited states, where a dark $mA_g$ exciton lies below the allowed\\n$1B_u$ exciton. This agrees with the unusual phonon sideband in $trans\\n$-$(CH)_x$ absorption, since the excited state attenuation caused by the fast\\ninternal conversion from $1B_u$ to $mA_g$ influences the apparent frequency\\nthat determines the phonon sideband. Consequently, from the EA and RS spectra\\nwe estimate the $1B_u$ lifetime in $trans $-$(CH)_x$ to be $\\\\sim 30$ fs.\\nIntegrated EA spectrum of $trans $-$(CH)_x$ shows a traditional Huang-Rhys type\\nseries with a relaxation parameter, $S \\\\sim 0.5$. This indicates that the EA\\nspectrum of the $trans $ isomer is also determined by a Stark shift related to\\nthe first derivative of the absorption spectrum, but preferentially for the\\nlongest chains in the films chain lengths distribution. This is due to the\\n$N^3$ response of the non-linear susceptibility, $\\\\chi^{(3)}$ ($\\\\sim$EA),\\ndependence on the chain length having $N$ monomers.\",\"PeriodicalId\":501211,\"journal\":{\"name\":\"arXiv - PHYS - Other Condensed Matter\",\"volume\":\"49 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Other Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究重新探讨了聚乙炔的电吸收光谱,以及电场强度、异构化程度和光极化状态的函数。顺式 $$-$(CH)_x$的电吸收光谱显示出一种振荡特征,它遵循材料吸收光谱的斯塔克偏移相关一阶导数,包含激发的 $C=C$ 伸缩振动的 v(0-1) 和 v(0-2) 边带,与拉曼光谱非常吻合。反式 $-$(CH)_x$的 EA 光谱与材料吸收光谱的一阶导数不匹配,声子边带频率与 RS 光谱不一致。反式 $-$(CH)_x$的 EA 光谱显示出低于第一个允许的 1B_u$ 激发子的频带。我们将这一特征解释为是由于电场激活了偶偶价暗(禁止)激子,即 $mA_g$ ($m>1$),这表明反式 $-$(CH)_x$的不发光是由于激发态的顺序颠倒造成的,其中暗 $mA_g$ 激子位于允许的 $1B_u$ 激子之下。这与反式-$(CH)_x$吸收中不寻常的声子边带相吻合,因为从$1B_u$到$mA_g$的快速内部转换所引起的激发态衰减会影响决定声子边带的表观频率。因此,根据 EA 和 RS 光谱,我们估计 $trans $-$(CH)_x$ 中 $1B_u$ 的寿命为 $\sim 30$ fs.$trans$-$(CH)_x$的综合 EA 光谱显示了传统的 Huang-Rhys 类型序列,弛豫参数为 $S \sim 0.5$。这表明反式$异构体的 EA 光谱也是由与吸收光谱的一阶导数有关的斯塔克偏移决定的,但在薄膜链长度分布中,最长的链优先。这是由于非线性电感的 $N^3$ 响应、$\chi^{(3)}$ ($\sim$EA) 与具有 $N$ 单体的链长有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The influence of dark excitons on the electroabsorption spectrum of polyacetylene
This study revisits the electroabsorption (EA) spectrum of polyacetylene, as functions of the electric field strength, isomerization degree, and light polarization states. The EA spectrum of $cis$-$(CH)_x$ reveals an oscillatory feature that follows the Stark shift-related first derivative of the materials absorption spectrum that contains v(0-1) and v(0-2) sidebands of the excited $C=C$ stretching vibration that agrees well with the Raman spectrum. EA spectrum of $trans $-$(CH)_x$ does not match the first derivative of the materials absorption spectrum, and the phonon sideband frequency does not agree with the RS spectrum. EA spectrum of $trans $-$(CH)_x$ reveals a band below the first allowed $1B_u$ exciton. We interpret this feature as due to the electric field activated even-parity dark (forbidden) exciton, namely $mA_g$ ($m >1$), showing that the nonluminescent $trans $-$(CH)_x$ is due to the reverse order of the excited states, where a dark $mA_g$ exciton lies below the allowed $1B_u$ exciton. This agrees with the unusual phonon sideband in $trans $-$(CH)_x$ absorption, since the excited state attenuation caused by the fast internal conversion from $1B_u$ to $mA_g$ influences the apparent frequency that determines the phonon sideband. Consequently, from the EA and RS spectra we estimate the $1B_u$ lifetime in $trans $-$(CH)_x$ to be $\sim 30$ fs. Integrated EA spectrum of $trans $-$(CH)_x$ shows a traditional Huang-Rhys type series with a relaxation parameter, $S \sim 0.5$. This indicates that the EA spectrum of the $trans $ isomer is also determined by a Stark shift related to the first derivative of the absorption spectrum, but preferentially for the longest chains in the films chain lengths distribution. This is due to the $N^3$ response of the non-linear susceptibility, $\chi^{(3)}$ ($\sim$EA), dependence on the chain length having $N$ monomers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信