正则图的弱外部平分线

IF 0.6 4区 数学 Q3 MATHEMATICS
Juan Yan, Ya-Hong Chen
{"title":"正则图的弱外部平分线","authors":"Juan Yan, Ya-Hong Chen","doi":"10.1007/s00373-024-02796-3","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i> be a graph. A <i>bisection</i> of <i>G</i> is a bipartition of <i>V</i>(<i>G</i>) with <span>\\(V(G)=V_1\\cup V_2\\)</span>, <span>\\(V_1\\cap V_2=\\emptyset \\)</span> and <span>\\(||V_1|-|V_2||\\le 1\\)</span>. Bollobás and Scott conjectured that every graph admits a bisection such that for every vertex, its external degree is greater than or equal to its internal degree minus one. In this paper, we confirm this conjecture for some regular graphs. Our results extend a result given by Ban and Linial (J Graph Theory 83:5–18, 2016). We also give an upper bound of the maximum bisection of graphs.</p>","PeriodicalId":12811,"journal":{"name":"Graphs and Combinatorics","volume":"48 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weak External Bisections of Regular Graphs\",\"authors\":\"Juan Yan, Ya-Hong Chen\",\"doi\":\"10.1007/s00373-024-02796-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i> be a graph. A <i>bisection</i> of <i>G</i> is a bipartition of <i>V</i>(<i>G</i>) with <span>\\\\(V(G)=V_1\\\\cup V_2\\\\)</span>, <span>\\\\(V_1\\\\cap V_2=\\\\emptyset \\\\)</span> and <span>\\\\(||V_1|-|V_2||\\\\le 1\\\\)</span>. Bollobás and Scott conjectured that every graph admits a bisection such that for every vertex, its external degree is greater than or equal to its internal degree minus one. In this paper, we confirm this conjecture for some regular graphs. Our results extend a result given by Ban and Linial (J Graph Theory 83:5–18, 2016). We also give an upper bound of the maximum bisection of graphs.</p>\",\"PeriodicalId\":12811,\"journal\":{\"name\":\"Graphs and Combinatorics\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Graphs and Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00373-024-02796-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graphs and Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00373-024-02796-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 G 是一个图。G 的一分为二是 V(G) 的二分,其中有\(V(G)=V_1\cup V_2\)、\(V_1\cap V_2=\emptyset \)和\(||V_1|-|V_2|||le 1\).Bollobás 和 Scott 猜想,每个图都有一个分段,使得每个顶点的外部度都大于或等于其内部度减一。在本文中,我们对一些规则图证实了这一猜想。我们的结果扩展了 Ban 和 Linial(J Graph Theory 83:5-18, 2016)给出的结果。我们还给出了图的最大平分上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Weak External Bisections of Regular Graphs

Weak External Bisections of Regular Graphs

Let G be a graph. A bisection of G is a bipartition of V(G) with \(V(G)=V_1\cup V_2\), \(V_1\cap V_2=\emptyset \) and \(||V_1|-|V_2||\le 1\). Bollobás and Scott conjectured that every graph admits a bisection such that for every vertex, its external degree is greater than or equal to its internal degree minus one. In this paper, we confirm this conjecture for some regular graphs. Our results extend a result given by Ban and Linial (J Graph Theory 83:5–18, 2016). We also give an upper bound of the maximum bisection of graphs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Graphs and Combinatorics
Graphs and Combinatorics 数学-数学
CiteScore
1.00
自引率
14.30%
发文量
160
审稿时长
6 months
期刊介绍: Graphs and Combinatorics is an international journal devoted to research concerning all aspects of combinatorial mathematics. In addition to original research papers, the journal also features survey articles from authors invited by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信