纳米粒子热物理特性的尺寸依赖性:熵和熔化热

IF 1 4区 物理与天体物理 Q4 PHYSICS, APPLIED
A. G. Kuzamishev, M. A. Shebzukhova, K. Ch. Bzhikhatlov
{"title":"纳米粒子热物理特性的尺寸依赖性:熵和熔化热","authors":"A. G. Kuzamishev, M. A. Shebzukhova, K. Ch. Bzhikhatlov","doi":"10.1134/s0018151x23050097","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>In the thermodynamic theory of phase equilibria in disperse systems, the size dependences of jumps in entropy and the heat of fusion of particles (including those in the nanometer range) are obtained with strict and consistent consideration of surface phenomena in the approach with separating surfaces. The consideration is carried out taking into account the dimensional dependences of the molar volume, melting temperature, and interfacial tension. Using the obtained relations, calculations were performed for spherical sodium and tin nanoparticles. This implies a decrease in the entropy and heat of fusion with decreasing nanoparticle size. The results are in close agreement with the experimental and calculated data available in the literature.</p>","PeriodicalId":13163,"journal":{"name":"High Temperature","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Size Dependences of the Thermal Physical Properties of Nanoparticles: Entropy and Heat of Melting\",\"authors\":\"A. G. Kuzamishev, M. A. Shebzukhova, K. Ch. Bzhikhatlov\",\"doi\":\"10.1134/s0018151x23050097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>In the thermodynamic theory of phase equilibria in disperse systems, the size dependences of jumps in entropy and the heat of fusion of particles (including those in the nanometer range) are obtained with strict and consistent consideration of surface phenomena in the approach with separating surfaces. The consideration is carried out taking into account the dimensional dependences of the molar volume, melting temperature, and interfacial tension. Using the obtained relations, calculations were performed for spherical sodium and tin nanoparticles. This implies a decrease in the entropy and heat of fusion with decreasing nanoparticle size. The results are in close agreement with the experimental and calculated data available in the literature.</p>\",\"PeriodicalId\":13163,\"journal\":{\"name\":\"High Temperature\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Temperature\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0018151x23050097\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Temperature","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0018151x23050097","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在分散体系相平衡的热力学理论中,在采用分离表面的方法时,严格一致地考虑了表面现象,从而获得了粒子(包括纳米范围内的粒子)熵和熔融热跃迁的尺寸相关性。计算时考虑了摩尔体积、熔化温度和界面张力的尺寸相关性。利用所获得的关系,对球形钠和锡纳米粒子进行了计算。这意味着随着纳米颗粒尺寸的减小,熵和熔化热也会降低。结果与文献中的实验和计算数据非常吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Size Dependences of the Thermal Physical Properties of Nanoparticles: Entropy and Heat of Melting

Size Dependences of the Thermal Physical Properties of Nanoparticles: Entropy and Heat of Melting

Abstract

In the thermodynamic theory of phase equilibria in disperse systems, the size dependences of jumps in entropy and the heat of fusion of particles (including those in the nanometer range) are obtained with strict and consistent consideration of surface phenomena in the approach with separating surfaces. The consideration is carried out taking into account the dimensional dependences of the molar volume, melting temperature, and interfacial tension. Using the obtained relations, calculations were performed for spherical sodium and tin nanoparticles. This implies a decrease in the entropy and heat of fusion with decreasing nanoparticle size. The results are in close agreement with the experimental and calculated data available in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
High Temperature
High Temperature 物理-物理:应用
CiteScore
1.50
自引率
40.00%
发文量
0
审稿时长
4-8 weeks
期刊介绍: High Temperature is an international peer reviewed journal that publishes original papers and reviews written by theoretical and experimental researchers. The journal deals with properties and processes in low-temperature plasma; thermophysical properties of substances including pure materials, mixtures and alloys; the properties in the vicinity of the critical point, equations of state; phase equilibrium; heat and mass transfer phenomena, in particular, by forced and free convections; processes of boiling and condensation, radiation, and complex heat transfer; experimental methods and apparatuses; high-temperature facilities for power engineering applications, etc. The journal reflects the current trends in thermophysical research. It presents the results of present-day experimental and theoretical studies in the processes of complex heat transfer, thermal, gas dynamic processes, and processes of heat and mass transfer, as well as the latest advances in the theoretical description of the properties of high-temperature media.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信