从地球喷射出的物体导致月球增长

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
S. I. Ipatov
{"title":"从地球喷射出的物体导致月球增长","authors":"S. I. Ipatov","doi":"10.1134/s0038094624010040","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">\n<b>Abstract</b>—</h3><p>The evolution of the orbits of bodies ejected from the Earth has been studied at the stage of its accumulation and early evolution after impacts of large planetesimals. In the considered variants of calculations of the motion of bodies ejected from the Earth, most of the bodies left the Hill sphere of the Earth and moved in heliocentric orbits. Their dynamical lifetime reached several hundred million years. At higher ejection velocities <i>v</i><sub>ej</sub> the probabilities of collisions of bodies with the Earth and Moon were generally lower. Over the entire considered time interval at the ejection velocity <i>v</i><sub>ej</sub>, equal to 11.5, 12 and 14 km/s, the values of the probability of a collision of a body with the Earth were approximately 0.3, 0.2 and 0.15–0.2, respectively. At ejection velocities <i>v</i><sub>ej</sub> ≤ 11.25 km/s, i.e., slightly exceeding a parabolic velocity, most of the ejected bodies fell back to the Earth. The probability of a collision of a body ejected from the Earth with the Moon moving in its present orbit was approximately 15–35 times less than that with the Earth at <i>v</i><sub>ej</sub> ≥ 11.5 km/s. The probability of a collision of such bodies with the Moon was mainly about 0.004–0.008 at ejection velocities of at least 14 km/s and about 0.006–0.01 at <i>v</i><sub>ej</sub> = 12 km/s. It was larger at lower ejection velocities and was in the range of 0.01–0.02 at <i>v</i><sub>ej</sub> = 11.3 km/s. The Moon may contain material ejected from the Earth during the accumulation of the Earth and during the late heavy bombardment. At the same time, as obtained in our calculations, the bodies ejected from the Earth and falling on the Moon embryo would not be enough for the Moon to grow to its present mass from a small embryo moving along the present orbit of the Moon. This result argues in favor of the formation of a lunar embryo and its further growth to most of the present mass of the Moon near the Earth. It seems more likely to us that the initial embryo of the Moon with a mass of no more than 0.1 of the mass of the Moon was formed simultaneously with the embryo of the Earth from a common rarefied condensation. For more efficient growth of the Moon embryo, it is desirable that during some collisions of impactor bodies with the Earth, the ejected bodies do not simply fly out of the crater, but some of the matter goes into orbits around the Earth, as in the multi-impact model. The average velocity of collisions of ejected bodies with the Earth is greater at a greater ejection velocity. The values of these collision velocities were about 13, 14–15, 14–16, 14–20, 14–25 km/s with ejection velocities equal to 11.3, 11.5, 12, 14 and 16.4 km/s, respectively. The velocities of collisions of bodies with the Moon were also higher at high ejection velocities and were mainly in the range of 7–8, 10–12, 10–16 and 11–20 km/s at <i>v</i><sub>ej</sub>, equal to 11.3, 12, 14 and 16.4 km/s, respectively.</p>","PeriodicalId":778,"journal":{"name":"Solar System Research","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Growth of the Moon Due To Bodies Ejected from the Earth\",\"authors\":\"S. I. Ipatov\",\"doi\":\"10.1134/s0038094624010040\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">\\n<b>Abstract</b>—</h3><p>The evolution of the orbits of bodies ejected from the Earth has been studied at the stage of its accumulation and early evolution after impacts of large planetesimals. In the considered variants of calculations of the motion of bodies ejected from the Earth, most of the bodies left the Hill sphere of the Earth and moved in heliocentric orbits. Their dynamical lifetime reached several hundred million years. At higher ejection velocities <i>v</i><sub>ej</sub> the probabilities of collisions of bodies with the Earth and Moon were generally lower. Over the entire considered time interval at the ejection velocity <i>v</i><sub>ej</sub>, equal to 11.5, 12 and 14 km/s, the values of the probability of a collision of a body with the Earth were approximately 0.3, 0.2 and 0.15–0.2, respectively. At ejection velocities <i>v</i><sub>ej</sub> ≤ 11.25 km/s, i.e., slightly exceeding a parabolic velocity, most of the ejected bodies fell back to the Earth. The probability of a collision of a body ejected from the Earth with the Moon moving in its present orbit was approximately 15–35 times less than that with the Earth at <i>v</i><sub>ej</sub> ≥ 11.5 km/s. The probability of a collision of such bodies with the Moon was mainly about 0.004–0.008 at ejection velocities of at least 14 km/s and about 0.006–0.01 at <i>v</i><sub>ej</sub> = 12 km/s. It was larger at lower ejection velocities and was in the range of 0.01–0.02 at <i>v</i><sub>ej</sub> = 11.3 km/s. The Moon may contain material ejected from the Earth during the accumulation of the Earth and during the late heavy bombardment. At the same time, as obtained in our calculations, the bodies ejected from the Earth and falling on the Moon embryo would not be enough for the Moon to grow to its present mass from a small embryo moving along the present orbit of the Moon. This result argues in favor of the formation of a lunar embryo and its further growth to most of the present mass of the Moon near the Earth. It seems more likely to us that the initial embryo of the Moon with a mass of no more than 0.1 of the mass of the Moon was formed simultaneously with the embryo of the Earth from a common rarefied condensation. For more efficient growth of the Moon embryo, it is desirable that during some collisions of impactor bodies with the Earth, the ejected bodies do not simply fly out of the crater, but some of the matter goes into orbits around the Earth, as in the multi-impact model. The average velocity of collisions of ejected bodies with the Earth is greater at a greater ejection velocity. The values of these collision velocities were about 13, 14–15, 14–16, 14–20, 14–25 km/s with ejection velocities equal to 11.3, 11.5, 12, 14 and 16.4 km/s, respectively. The velocities of collisions of bodies with the Moon were also higher at high ejection velocities and were mainly in the range of 7–8, 10–12, 10–16 and 11–20 km/s at <i>v</i><sub>ej</sub>, equal to 11.3, 12, 14 and 16.4 km/s, respectively.</p>\",\"PeriodicalId\":778,\"journal\":{\"name\":\"Solar System Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solar System Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0038094624010040\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar System Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0038094624010040","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要--在大型类地行星撞击地球后的积累和早期演变阶段,研究了抛出地球的天体轨道的演变。在计算从地球喷出的天体的运动时,大多数天体离开了地球的希尔球,在日心轨道上运动。它们的动力学寿命达到几亿年。在较高的抛射速度 vej 下,天体与地球和月球碰撞的概率通常较低。在弹射速度 vej 等于 11.5、12 和 14 千米/秒的整个时间间隔内,天体与地球碰撞的概率值分别约为 0.3、0.2 和 0.15-0.2。在抛射速度 vej ≤ 11.25 千米/秒时,即略微超过抛物线速度时,大部分抛射体落回地球。从地球射出的天体与在其目前轨道上运动的月球发生碰撞的概率大约比在 vej ≥ 11.5 公里/秒时与地球发生碰撞的概率小 15-35 倍。在抛射速度至少为 14 千米/秒时,这类天体与月球碰撞的概率主要约为 0.004-0.008,在 vej = 12 千米/秒时约为 0.006-0.01。在较低的抛射速度下,这个范围更大,在 vej = 11.3 km/s 时,范围在 0.01-0.02 之间。月球可能含有在地球积累过程中和后期重轰击过程中从地球喷出的物质。同时,根据我们的计算结果,从地球喷出并落在月球胚胎上的物质不足以让月球从一个沿着目前月球轨道移动的小胚胎成长到现在的质量。这一结果支持月球胚胎的形成,以及它在地球附近进一步生长到月球目前质量的大部分。在我们看来,质量不超过月球质量 0.1 的月球初始胚胎更有可能是与地球胚胎同时由共同的稀薄凝结物形成的。为了使月球胚胎更有效地成长,在撞击体与地球的某些碰撞过程中,最好不要简单地将弹射出的物体飞出陨石坑,而是像多重撞击模型中那样,让部分物质进入地球周围的轨道。弹射速度越大,弹射体与地球碰撞的平均速度就越大。这些碰撞速度值分别约为 13、14-15、14-16、14-20、14-25 千米/秒,弹射速度分别等于 11.3、11.5、12、14 和 16.4 千米/秒。在抛射速度较高时,天体与月球的碰撞速度也较高,主要在 7-8、10-12、10-16 和 11-20 千米/秒之间,vej 分别等于 11.3、12、14 和 16.4 千米/秒。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Growth of the Moon Due To Bodies Ejected from the Earth

Growth of the Moon Due To Bodies Ejected from the Earth

Abstract

The evolution of the orbits of bodies ejected from the Earth has been studied at the stage of its accumulation and early evolution after impacts of large planetesimals. In the considered variants of calculations of the motion of bodies ejected from the Earth, most of the bodies left the Hill sphere of the Earth and moved in heliocentric orbits. Their dynamical lifetime reached several hundred million years. At higher ejection velocities vej the probabilities of collisions of bodies with the Earth and Moon were generally lower. Over the entire considered time interval at the ejection velocity vej, equal to 11.5, 12 and 14 km/s, the values of the probability of a collision of a body with the Earth were approximately 0.3, 0.2 and 0.15–0.2, respectively. At ejection velocities vej ≤ 11.25 km/s, i.e., slightly exceeding a parabolic velocity, most of the ejected bodies fell back to the Earth. The probability of a collision of a body ejected from the Earth with the Moon moving in its present orbit was approximately 15–35 times less than that with the Earth at vej ≥ 11.5 km/s. The probability of a collision of such bodies with the Moon was mainly about 0.004–0.008 at ejection velocities of at least 14 km/s and about 0.006–0.01 at vej = 12 km/s. It was larger at lower ejection velocities and was in the range of 0.01–0.02 at vej = 11.3 km/s. The Moon may contain material ejected from the Earth during the accumulation of the Earth and during the late heavy bombardment. At the same time, as obtained in our calculations, the bodies ejected from the Earth and falling on the Moon embryo would not be enough for the Moon to grow to its present mass from a small embryo moving along the present orbit of the Moon. This result argues in favor of the formation of a lunar embryo and its further growth to most of the present mass of the Moon near the Earth. It seems more likely to us that the initial embryo of the Moon with a mass of no more than 0.1 of the mass of the Moon was formed simultaneously with the embryo of the Earth from a common rarefied condensation. For more efficient growth of the Moon embryo, it is desirable that during some collisions of impactor bodies with the Earth, the ejected bodies do not simply fly out of the crater, but some of the matter goes into orbits around the Earth, as in the multi-impact model. The average velocity of collisions of ejected bodies with the Earth is greater at a greater ejection velocity. The values of these collision velocities were about 13, 14–15, 14–16, 14–20, 14–25 km/s with ejection velocities equal to 11.3, 11.5, 12, 14 and 16.4 km/s, respectively. The velocities of collisions of bodies with the Moon were also higher at high ejection velocities and were mainly in the range of 7–8, 10–12, 10–16 and 11–20 km/s at vej, equal to 11.3, 12, 14 and 16.4 km/s, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solar System Research
Solar System Research 地学天文-天文与天体物理
CiteScore
1.60
自引率
33.30%
发文量
32
审稿时长
6-12 weeks
期刊介绍: Solar System Research publishes articles concerning the bodies of the Solar System, i.e., planets and their satellites, asteroids, comets, meteoric substances, and cosmic dust. The articles consider physics, dynamics and composition of these bodies, and techniques of their exploration. The journal addresses the problems of comparative planetology, physics of the planetary atmospheres and interiors, cosmochemistry, as well as planetary plasma environment and heliosphere, specifically those related to solar-planetary interactions. Attention is paid to studies of exoplanets and complex problems of the origin and evolution of planetary systems including the solar system, based on the results of astronomical observations, laboratory studies of meteorites, relevant theoretical approaches and mathematical modeling. Alongside with the original results of experimental and theoretical studies, the journal publishes scientific reviews in the field of planetary exploration, and notes on observational results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信