通过关系限制

Sergei O. Ivanov, Roman Mikhailov, Fedor Pavutnitskiy
{"title":"通过关系限制","authors":"Sergei O. Ivanov, Roman Mikhailov, Fedor Pavutnitskiy","doi":"arxiv-2405.03175","DOIUrl":null,"url":null,"abstract":"In this paper, we study operations on functors in the category of abelian\ngroups simplar to the derivation in the sense of Dold-Puppe. They are defined\nas derived limits of a functor applied to the relation subgroup over a category\nof free presentations of the group. The integral homology of the\nEilenberg-Maclane space $K(\\mathbb Z,3)$ appears as a part of description of\nthese operations applied to symmetric powers.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limits via relations\",\"authors\":\"Sergei O. Ivanov, Roman Mikhailov, Fedor Pavutnitskiy\",\"doi\":\"arxiv-2405.03175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study operations on functors in the category of abelian\\ngroups simplar to the derivation in the sense of Dold-Puppe. They are defined\\nas derived limits of a functor applied to the relation subgroup over a category\\nof free presentations of the group. The integral homology of the\\nEilenberg-Maclane space $K(\\\\mathbb Z,3)$ appears as a part of description of\\nthese operations applied to symmetric powers.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.03175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.03175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了无穷群范畴中的函子操作,这些操作与多尔-普佩意义上的导数简单相近。它们被定义为应用于关系子群的函数在该群的自由呈现范畴上的派生极限。艾伦伯格-麦克莱恩空间 $K(\mathbb Z,3)$ 的积分同调是描述这些应用于对称幂的运算的一部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Limits via relations
In this paper, we study operations on functors in the category of abelian groups simplar to the derivation in the sense of Dold-Puppe. They are defined as derived limits of a functor applied to the relation subgroup over a category of free presentations of the group. The integral homology of the Eilenberg-Maclane space $K(\mathbb Z,3)$ appears as a part of description of these operations applied to symmetric powers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信