信号时间逻辑下随机多代理系统的概率管控合成

Eleftherios E. Vlahakis, Lars Lindemann, Pantelis Sopasakis, Dimos V. Dimarogonas
{"title":"信号时间逻辑下随机多代理系统的概率管控合成","authors":"Eleftherios E. Vlahakis, Lars Lindemann, Pantelis Sopasakis, Dimos V. Dimarogonas","doi":"arxiv-2405.02827","DOIUrl":null,"url":null,"abstract":"We consider the control design of stochastic discrete-time linear multi-agent\nsystems (MASs) under a global signal temporal logic (STL) specification to be\nsatisfied at a predefined probability. By decomposing the dynamics into\ndeterministic and error components, we construct a probabilistic reachable tube\n(PRT) as the Cartesian product of reachable sets of the individual error\nsystems driven by disturbances lying in confidence regions (CRs) with a fixed\nprobability. By bounding the PRT probability with the specification\nprobability, we tighten all state constraints induced by the STL specification\nby solving tractable optimization problems over segments of the PRT, and\nconvert the underlying stochastic problem into a deterministic one. This\napproach reduces conservatism compared to tightening guided by the STL\nstructure. Additionally, we propose a recursively feasible algorithm to attack\nthe resulting problem by decomposing it into agent-level subproblems, which are\nsolved iteratively according to a scheduling policy. We demonstrate our method\non a ten-agent system, where existing approaches are impractical.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic tube-based control synthesis of stochastic multi-agent systems under signal temporal logic\",\"authors\":\"Eleftherios E. Vlahakis, Lars Lindemann, Pantelis Sopasakis, Dimos V. Dimarogonas\",\"doi\":\"arxiv-2405.02827\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the control design of stochastic discrete-time linear multi-agent\\nsystems (MASs) under a global signal temporal logic (STL) specification to be\\nsatisfied at a predefined probability. By decomposing the dynamics into\\ndeterministic and error components, we construct a probabilistic reachable tube\\n(PRT) as the Cartesian product of reachable sets of the individual error\\nsystems driven by disturbances lying in confidence regions (CRs) with a fixed\\nprobability. By bounding the PRT probability with the specification\\nprobability, we tighten all state constraints induced by the STL specification\\nby solving tractable optimization problems over segments of the PRT, and\\nconvert the underlying stochastic problem into a deterministic one. This\\napproach reduces conservatism compared to tightening guided by the STL\\nstructure. Additionally, we propose a recursively feasible algorithm to attack\\nthe resulting problem by decomposing it into agent-level subproblems, which are\\nsolved iteratively according to a scheduling policy. We demonstrate our method\\non a ten-agent system, where existing approaches are impractical.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02827\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02827","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是在全局信号时间逻辑(STL)规范下随机离散时间线性多代理系统(MAS)的控制设计,该规范必须在预定概率下满足。通过将动力学分解为确定性和误差两个部分,我们构建了一个概率可达管(PRT),它是由位于置信区域(CR)的干扰驱动的单个误差系统的可达集的笛卡尔乘积,具有固定的概率。通过将 PRT 概率与规范概率进行绑定,我们通过求解 PRT 段上的可控优化问题,收紧了 STL 规范引起的所有状态约束,并将底层随机问题转换为确定性问题。与 STL 结构引导的收紧相比,这种方法减少了保守性。此外,我们还提出了一种递归可行的算法,通过将问题分解为代理级子问题,并根据调度策略迭代解决。我们在一个十个代理的系统上演示了我们的方法,现有的方法在这个系统上是不切实际的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Probabilistic tube-based control synthesis of stochastic multi-agent systems under signal temporal logic
We consider the control design of stochastic discrete-time linear multi-agent systems (MASs) under a global signal temporal logic (STL) specification to be satisfied at a predefined probability. By decomposing the dynamics into deterministic and error components, we construct a probabilistic reachable tube (PRT) as the Cartesian product of reachable sets of the individual error systems driven by disturbances lying in confidence regions (CRs) with a fixed probability. By bounding the PRT probability with the specification probability, we tighten all state constraints induced by the STL specification by solving tractable optimization problems over segments of the PRT, and convert the underlying stochastic problem into a deterministic one. This approach reduces conservatism compared to tightening guided by the STL structure. Additionally, we propose a recursively feasible algorithm to attack the resulting problem by decomposing it into agent-level subproblems, which are solved iteratively according to a scheduling policy. We demonstrate our method on a ten-agent system, where existing approaches are impractical.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信