复 WKB 法(复平面上的一维线性问题)

IF 0.6 4区 数学 Q3 MATHEMATICS
A. A. Fedotov
{"title":"复 WKB 法(复平面上的一维线性问题)","authors":"A. A. Fedotov","doi":"10.1134/s0001434623110731","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> The survey is devoted to the complex WKB method which arose as an approach to describing the asymptotic behavior of solutions to one-dimensional ordinary differential equations with semiclassical parameter on the complex plane. Later this method was generalized to the case of difference equations. Related constructions arose when studying exponentially small effects in the problem concerning the adiabatic perturbation of the one-dimensional periodic Schrödinger operator. All these three branches of the method are discussed in the survey from a unified position. The main constructions of the method are described and the proofs are either provided or their ideas are described in detail. Some new finds are published for the first time. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Complex WKB Method (One-Dimensional Linear Problems on the Complex Plane)\",\"authors\":\"A. A. Fedotov\",\"doi\":\"10.1134/s0001434623110731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> The survey is devoted to the complex WKB method which arose as an approach to describing the asymptotic behavior of solutions to one-dimensional ordinary differential equations with semiclassical parameter on the complex plane. Later this method was generalized to the case of difference equations. Related constructions arose when studying exponentially small effects in the problem concerning the adiabatic perturbation of the one-dimensional periodic Schrödinger operator. All these three branches of the method are discussed in the survey from a unified position. The main constructions of the method are described and the proofs are either provided or their ideas are described in detail. Some new finds are published for the first time. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434623110731\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434623110731","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文主要研究复 WKB 方法,它是描述复平面上具有半经典参数的一元常微分方程解的渐近行为的一种方法。后来,这种方法被推广到差分方程中。在研究一维周期性薛定谔算子的绝热扰动问题中的指数小效应时,出现了相关的构造。本研究以统一的立场讨论了该方法的所有这三个分支。介绍了该方法的主要构造,并提供了证明或详细描述了其思想。一些新发现是首次发表。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Complex WKB Method (One-Dimensional Linear Problems on the Complex Plane)

Complex WKB Method (One-Dimensional Linear Problems on the Complex Plane)

Abstract

The survey is devoted to the complex WKB method which arose as an approach to describing the asymptotic behavior of solutions to one-dimensional ordinary differential equations with semiclassical parameter on the complex plane. Later this method was generalized to the case of difference equations. Related constructions arose when studying exponentially small effects in the problem concerning the adiabatic perturbation of the one-dimensional periodic Schrödinger operator. All these three branches of the method are discussed in the survey from a unified position. The main constructions of the method are described and the proofs are either provided or their ideas are described in detail. Some new finds are published for the first time.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信