{"title":"基于 DAE-NMF-VMD 的心肺声音分离方法研究","authors":"Wenhui Sun, Yipeng Zhang, Fuming Chen","doi":"10.1186/s13634-024-01152-0","DOIUrl":null,"url":null,"abstract":"<p>Auscultation is the most effective method for diagnosing cardiovascular and respiratory diseases. However, stethoscopes typically capture mixed signals of heart and lung sounds, which can affect the auscultation effect of doctors. Therefore, the efficient separation of mixed heart and lung sound signals plays a crucial role in improving the diagnosis of cardiovascular and respiratory diseases. In this paper, we propose a blind source separation method for heart and lung sounds based on deep autoencoder (DAE), nonnegative matrix factorization (NMF) and variational mode decomposition (VMD). Firstly, DAE is employed to extract highly informative features from the heart and lung sound signals. Subsequently, NMF clustering is applied to group the heart and lung sounds based on their distinct periodicities, achieving the separation of the mixed heart and lung sounds. Finally, variational mode decomposition is used for denoising the separated signals. Experimental results demonstrate that the proposed method effectively separates heart and lung sound signals and exhibits significant advantages in terms of standardized evaluation metrics when compared to contrast methods.</p>","PeriodicalId":11816,"journal":{"name":"EURASIP Journal on Advances in Signal Processing","volume":"32 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on heart and lung sound separation method based on DAE–NMF–VMD\",\"authors\":\"Wenhui Sun, Yipeng Zhang, Fuming Chen\",\"doi\":\"10.1186/s13634-024-01152-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Auscultation is the most effective method for diagnosing cardiovascular and respiratory diseases. However, stethoscopes typically capture mixed signals of heart and lung sounds, which can affect the auscultation effect of doctors. Therefore, the efficient separation of mixed heart and lung sound signals plays a crucial role in improving the diagnosis of cardiovascular and respiratory diseases. In this paper, we propose a blind source separation method for heart and lung sounds based on deep autoencoder (DAE), nonnegative matrix factorization (NMF) and variational mode decomposition (VMD). Firstly, DAE is employed to extract highly informative features from the heart and lung sound signals. Subsequently, NMF clustering is applied to group the heart and lung sounds based on their distinct periodicities, achieving the separation of the mixed heart and lung sounds. Finally, variational mode decomposition is used for denoising the separated signals. Experimental results demonstrate that the proposed method effectively separates heart and lung sound signals and exhibits significant advantages in terms of standardized evaluation metrics when compared to contrast methods.</p>\",\"PeriodicalId\":11816,\"journal\":{\"name\":\"EURASIP Journal on Advances in Signal Processing\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Advances in Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1186/s13634-024-01152-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Advances in Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s13634-024-01152-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
Research on heart and lung sound separation method based on DAE–NMF–VMD
Auscultation is the most effective method for diagnosing cardiovascular and respiratory diseases. However, stethoscopes typically capture mixed signals of heart and lung sounds, which can affect the auscultation effect of doctors. Therefore, the efficient separation of mixed heart and lung sound signals plays a crucial role in improving the diagnosis of cardiovascular and respiratory diseases. In this paper, we propose a blind source separation method for heart and lung sounds based on deep autoencoder (DAE), nonnegative matrix factorization (NMF) and variational mode decomposition (VMD). Firstly, DAE is employed to extract highly informative features from the heart and lung sound signals. Subsequently, NMF clustering is applied to group the heart and lung sounds based on their distinct periodicities, achieving the separation of the mixed heart and lung sounds. Finally, variational mode decomposition is used for denoising the separated signals. Experimental results demonstrate that the proposed method effectively separates heart and lung sound signals and exhibits significant advantages in terms of standardized evaluation metrics when compared to contrast methods.
期刊介绍:
The aim of the EURASIP Journal on Advances in Signal Processing is to highlight the theoretical and practical aspects of signal processing in new and emerging technologies. The journal is directed as much at the practicing engineer as at the academic researcher. Authors of articles with novel contributions to the theory and/or practice of signal processing are welcome to submit their articles for consideration.