库尼塔 SDE 的最可能流量

IF 1.6 2区 数学 Q2 MATHEMATICS, APPLIED
Erlend Grong, Stefan Sommer
{"title":"库尼塔 SDE 的最可能流量","authors":"Erlend Grong,&nbsp;Stefan Sommer","doi":"10.1007/s00245-024-10110-z","DOIUrl":null,"url":null,"abstract":"<div><p>We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-024-10110-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Most Probable Flows for Kunita SDEs\",\"authors\":\"Erlend Grong,&nbsp;Stefan Sommer\",\"doi\":\"10.1007/s00245-024-10110-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00245-024-10110-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-024-10110-z\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-024-10110-z","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们确定了库尼塔布朗运动的最可能流,即带有欧拉噪声和确定性漂移的随机流。例如,这种随机过程出现在流体动力学和形状分析中,以粗尺度确定性动力学和细粒度噪声为模型。我们在处理这个无限维问题时,在底层域中加入了源自噪声的黎曼度量。通过分析和实验,我们将所得到的最有可能的流动与未受扰动的确定性流动进行了比较,并对方程进行了积分,同时选择了不同的噪声结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Most Probable Flows for Kunita SDEs

Most Probable Flows for Kunita SDEs

We identify most probable flows for Kunita Brownian motions, i.e. stochastic flows with Eulerian noise and deterministic drifts. Such stochastic processes appear for example in fluid dynamics and shape analysis modelling coarse scale deterministic dynamics together with fine-grained noise. We treat this infinite dimensional problem by equipping the underlying domain with a Riemannian metric originating from the noise. The resulting most probable flows are compared with the non-perturbed deterministic flow, both analytically and experimentally by integrating the equations with various choice of noise structures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
5.60%
发文量
103
审稿时长
>12 weeks
期刊介绍: The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信