{"title":"铝合金和 CFRTP 的水下异种搅拌摩擦搭接焊","authors":"Yuan Zhang, Yibo Sun, Yong Liu, Kainan Guan, Xiao Wei, Xinhua Yang","doi":"10.1177/07316844241252050","DOIUrl":null,"url":null,"abstract":"With the rapid development of the transportation and electronic equipment industries, the demand for robust joining technology for metal/polymer has become imperative, especially in the pursuit of lightweight solutions. Underwater welding is one of the methods to reduce the formation of holes and other welding defects, which is conducive to improve the quality and strength of joints. In this study, the underwater friction stir lap welding (UFSLW) of 6061-T6 Al alloy and carbon fiber reinforced thermoplastic (CFRTP) joints is investigated. The welds are evaluated by optical microscope (OM) image, scanning electron microscope (SEM), and energy dispersive X-ray spectrometer (EDS) of the fracture, tensile, and hardness analysis. Research reveals that the presence of cracks and tunnel defects similar to those in air FSLW (AFSLW) is reduced in the underwater welding process. From the microscopic result analysis, the rapid dissipation of frictional heat and substrate viscosity in the cooling medium of circulating water in the stirring zone reduces the interaction between Al alloy and molten CFRTP, which leads to the rapid transformation of the plasticized material into a solid state and reduces the formation of thick stacked layer. In addition, finer Al alloy fragments are obtained in the welding zone due to the fast cooling rate. Ultimately, the maximum tensile strength of 32.12 MPa is achieved, which is 10.76% higher than that of the same welding parameters in air. Based on UFSLW technology, the joint strength of this study is 69% higher than that of Al alloy and polymer joints, which demonstrates enormous application potential and opens up new prospects for the joining technology of dissimilar materials.","PeriodicalId":16943,"journal":{"name":"Journal of Reinforced Plastics and Composites","volume":"42 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Underwater dissimilar friction stir lap welding of aluminum alloy and CFRTP\",\"authors\":\"Yuan Zhang, Yibo Sun, Yong Liu, Kainan Guan, Xiao Wei, Xinhua Yang\",\"doi\":\"10.1177/07316844241252050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the rapid development of the transportation and electronic equipment industries, the demand for robust joining technology for metal/polymer has become imperative, especially in the pursuit of lightweight solutions. Underwater welding is one of the methods to reduce the formation of holes and other welding defects, which is conducive to improve the quality and strength of joints. In this study, the underwater friction stir lap welding (UFSLW) of 6061-T6 Al alloy and carbon fiber reinforced thermoplastic (CFRTP) joints is investigated. The welds are evaluated by optical microscope (OM) image, scanning electron microscope (SEM), and energy dispersive X-ray spectrometer (EDS) of the fracture, tensile, and hardness analysis. Research reveals that the presence of cracks and tunnel defects similar to those in air FSLW (AFSLW) is reduced in the underwater welding process. From the microscopic result analysis, the rapid dissipation of frictional heat and substrate viscosity in the cooling medium of circulating water in the stirring zone reduces the interaction between Al alloy and molten CFRTP, which leads to the rapid transformation of the plasticized material into a solid state and reduces the formation of thick stacked layer. In addition, finer Al alloy fragments are obtained in the welding zone due to the fast cooling rate. Ultimately, the maximum tensile strength of 32.12 MPa is achieved, which is 10.76% higher than that of the same welding parameters in air. Based on UFSLW technology, the joint strength of this study is 69% higher than that of Al alloy and polymer joints, which demonstrates enormous application potential and opens up new prospects for the joining technology of dissimilar materials.\",\"PeriodicalId\":16943,\"journal\":{\"name\":\"Journal of Reinforced Plastics and Composites\",\"volume\":\"42 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Reinforced Plastics and Composites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/07316844241252050\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Reinforced Plastics and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/07316844241252050","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
摘要
随着交通运输和电子设备行业的快速发展,对金属/聚合物的坚固连接技术的需求已变得势在必行,尤其是在追求轻量化解决方案方面。水下焊接是减少孔洞和其他焊接缺陷形成的方法之一,有利于提高接头的质量和强度。本研究探讨了 6061-T6 Al 合金与碳纤维增强热塑性塑料(CFRTP)接头的水下搅拌摩擦搭接焊(UFSLW)。通过光学显微镜(OM)图像、扫描电子显微镜(SEM)和能量色散 X 射线光谱仪(EDS)的断裂、拉伸和硬度分析对焊缝进行了评估。研究结果表明,在水下焊接过程中,与空气无缝钢管焊接(AFSLW)类似的裂纹和隧道缺陷减少了。从微观结果分析,搅拌区循环水冷却介质中摩擦热和基体粘度的快速消散减少了铝合金与熔融 CFRTP 之间的相互作用,从而导致塑化材料快速转变为固态,并减少了厚堆叠层的形成。此外,由于冷却速度快,焊接区的铝合金碎片更细。最终,最大拉伸强度达到 32.12 兆帕,比空气中相同焊接参数的拉伸强度高出 10.76%。基于超临界低温焊接技术,本研究的接头强度比铝合金和聚合物接头强度高出 69%,显示出巨大的应用潜力,为异种材料的连接技术开辟了新的前景。
Underwater dissimilar friction stir lap welding of aluminum alloy and CFRTP
With the rapid development of the transportation and electronic equipment industries, the demand for robust joining technology for metal/polymer has become imperative, especially in the pursuit of lightweight solutions. Underwater welding is one of the methods to reduce the formation of holes and other welding defects, which is conducive to improve the quality and strength of joints. In this study, the underwater friction stir lap welding (UFSLW) of 6061-T6 Al alloy and carbon fiber reinforced thermoplastic (CFRTP) joints is investigated. The welds are evaluated by optical microscope (OM) image, scanning electron microscope (SEM), and energy dispersive X-ray spectrometer (EDS) of the fracture, tensile, and hardness analysis. Research reveals that the presence of cracks and tunnel defects similar to those in air FSLW (AFSLW) is reduced in the underwater welding process. From the microscopic result analysis, the rapid dissipation of frictional heat and substrate viscosity in the cooling medium of circulating water in the stirring zone reduces the interaction between Al alloy and molten CFRTP, which leads to the rapid transformation of the plasticized material into a solid state and reduces the formation of thick stacked layer. In addition, finer Al alloy fragments are obtained in the welding zone due to the fast cooling rate. Ultimately, the maximum tensile strength of 32.12 MPa is achieved, which is 10.76% higher than that of the same welding parameters in air. Based on UFSLW technology, the joint strength of this study is 69% higher than that of Al alloy and polymer joints, which demonstrates enormous application potential and opens up new prospects for the joining technology of dissimilar materials.
期刊介绍:
The Journal of Reinforced Plastics and Composites is a fully peer-reviewed international journal that publishes original research and review articles on a broad range of today''s reinforced plastics and composites including areas in:
Constituent materials: matrix materials, reinforcements and coatings.
Properties and performance: The results of testing, predictive models, and in-service evaluation of a wide range of materials are published, providing the reader with extensive properties data for reference.
Analysis and design: Frequency reports on these subjects inform the reader of analytical techniques, design processes and the many design options available in materials composition.
Processing and fabrication: There is increased interest among materials engineers in cost-effective processing.
Applications: Reports on new materials R&D are often related to the service requirements of specific application areas, such as automotive, marine, construction and aviation.
Reports on special topics are regularly included such as recycling, environmental effects, novel materials, computer-aided design, predictive modelling, and "smart" composite materials.
"The articles in the Journal of Reinforced Plastics and Products are must reading for engineers in industry and for researchers working on leading edge problems" Professor Emeritus Stephen W Tsai National Sun Yat-sen University, Taiwan
This journal is a member of the Committee on Publication Ethics (COPE).