不稳定的代数 K 理论:同调稳定性及其他观察结果

Mikala Ørsnes Jansen
{"title":"不稳定的代数 K 理论:同调稳定性及其他观察结果","authors":"Mikala Ørsnes Jansen","doi":"arxiv-2405.02065","DOIUrl":null,"url":null,"abstract":"We investigate stability properties of the reductive Borel-Serre categories;\nthese were introduced as a model for unstable algebraic K-theory in previous\nwork. We see that they exhibit better homological stability properties than the\ngeneral linear groups. We also show that they provide an explicit model for\nYuan's partial algebraic K-theory.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unstable algebraic K-theory: homological stability and other observations\",\"authors\":\"Mikala Ørsnes Jansen\",\"doi\":\"arxiv-2405.02065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate stability properties of the reductive Borel-Serre categories;\\nthese were introduced as a model for unstable algebraic K-theory in previous\\nwork. We see that they exhibit better homological stability properties than the\\ngeneral linear groups. We also show that they provide an explicit model for\\nYuan's partial algebraic K-theory.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.02065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.02065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了还原伯勒-塞雷范畴的稳定性;这些范畴是在以前的工作中作为不稳定代数 K 理论的模型引入的。我们发现它们比一般线性群表现出更好的同调稳定性。我们还证明它们为袁氏部分代数 K 理论提供了一个明确的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unstable algebraic K-theory: homological stability and other observations
We investigate stability properties of the reductive Borel-Serre categories; these were introduced as a model for unstable algebraic K-theory in previous work. We see that they exhibit better homological stability properties than the general linear groups. We also show that they provide an explicit model for Yuan's partial algebraic K-theory.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信