多重径向布拉什克-闵科夫斯基同构

IF 0.6 4区 数学 Q3 MATHEMATICS
Chang-Jian Zhao
{"title":"多重径向布拉什克-闵科夫斯基同构","authors":"Chang-Jian Zhao","doi":"10.1134/s0001434623110718","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p> In the paper, our main aim is to generalize the mixed radial Blaschke–Minkowski homomorphisms and Aleksandrov–Fenchel inequality for mixed radial Blaschke–Minkowski homomorphisms to the Orlicz space. Under the framework of Orlicz dual Brunn–Minkowski theory, we introduce a new affine geometric quantity by calculating Orlicz first order variation of dual quermassintegrals of the mixed radial Blaschke–Minkowski homomorphisms and call it <i> Orlicz multiple radial Blaschke–Minkowski homomorphisms</i>. The fundamental notions and conclusions of dual quermassintegrals of mixed radial Blaschke–Minkowski homomorphisms and Aleksandrov–Fenchel inequality for mixed radial Blaschke–Minkowski homomorphisms are extended to an Orlicz setting. The related concepts and inequalities of Orlicz mixed intersection bodies are also derived. The new Orlicz–Aleksandrov–Fenchel inequality for dual quermassintegrals of Orlicz multiple radial Blaschke–Minkowski homomorphisms in special case yield not only new <span>\\(L_p\\)</span> type Aleksandrov–Fenchel inequality and Orlicz–Minkowski inequality but also Orlicz–Aleksandrov–Fenchel inequality for Orlicz mixed intersection bodies. </p>","PeriodicalId":18294,"journal":{"name":"Mathematical Notes","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Multiple Radial Blaschke–Minkowski Homomorphisms\",\"authors\":\"Chang-Jian Zhao\",\"doi\":\"10.1134/s0001434623110718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p> In the paper, our main aim is to generalize the mixed radial Blaschke–Minkowski homomorphisms and Aleksandrov–Fenchel inequality for mixed radial Blaschke–Minkowski homomorphisms to the Orlicz space. Under the framework of Orlicz dual Brunn–Minkowski theory, we introduce a new affine geometric quantity by calculating Orlicz first order variation of dual quermassintegrals of the mixed radial Blaschke–Minkowski homomorphisms and call it <i> Orlicz multiple radial Blaschke–Minkowski homomorphisms</i>. The fundamental notions and conclusions of dual quermassintegrals of mixed radial Blaschke–Minkowski homomorphisms and Aleksandrov–Fenchel inequality for mixed radial Blaschke–Minkowski homomorphisms are extended to an Orlicz setting. The related concepts and inequalities of Orlicz mixed intersection bodies are also derived. The new Orlicz–Aleksandrov–Fenchel inequality for dual quermassintegrals of Orlicz multiple radial Blaschke–Minkowski homomorphisms in special case yield not only new <span>\\\\(L_p\\\\)</span> type Aleksandrov–Fenchel inequality and Orlicz–Minkowski inequality but also Orlicz–Aleksandrov–Fenchel inequality for Orlicz mixed intersection bodies. </p>\",\"PeriodicalId\":18294,\"journal\":{\"name\":\"Mathematical Notes\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Notes\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1134/s0001434623110718\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Notes","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1134/s0001434623110718","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 本文的主要目的是将混合径向布拉什克-闵科夫斯基同态和混合径向布拉什克-闵科夫斯基同态的亚历山大罗夫-芬切尔不等式推广到奥利茨空间。在奥立兹对偶布伦-闵科夫斯基理论框架下,我们通过计算混合径向布拉什克-闵科夫斯基同态的对偶质点积分的奥立兹一阶变化,引入了一个新的仿射几何量,并称之为奥立兹多重径向布拉什克-闵科夫斯基同态。混合径向布拉什克-闵科夫斯基同态的对偶质点积分和混合径向布拉什克-闵科夫斯基同态的阿列克桑德罗夫-芬切尔不等式的基本概念和结论被扩展到奥利茨环境。同时还推导出了奥立兹混合交点体的相关概念和不等式。新的奥利奇-阿莱克桑德罗夫-芬切尔不等式在特殊情况下用于奥利奇多重径向布拉什克-闵可夫斯基同态的对偶质积分,不仅产生了新\(L_p\)型阿莱克桑德罗夫-芬切尔不等式和奥利奇-闵可夫斯基不等式,还产生了奥利奇混合交点体的奥利奇-阿莱克桑德罗夫-芬切尔不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Multiple Radial Blaschke–Minkowski Homomorphisms

Abstract

In the paper, our main aim is to generalize the mixed radial Blaschke–Minkowski homomorphisms and Aleksandrov–Fenchel inequality for mixed radial Blaschke–Minkowski homomorphisms to the Orlicz space. Under the framework of Orlicz dual Brunn–Minkowski theory, we introduce a new affine geometric quantity by calculating Orlicz first order variation of dual quermassintegrals of the mixed radial Blaschke–Minkowski homomorphisms and call it Orlicz multiple radial Blaschke–Minkowski homomorphisms. The fundamental notions and conclusions of dual quermassintegrals of mixed radial Blaschke–Minkowski homomorphisms and Aleksandrov–Fenchel inequality for mixed radial Blaschke–Minkowski homomorphisms are extended to an Orlicz setting. The related concepts and inequalities of Orlicz mixed intersection bodies are also derived. The new Orlicz–Aleksandrov–Fenchel inequality for dual quermassintegrals of Orlicz multiple radial Blaschke–Minkowski homomorphisms in special case yield not only new \(L_p\) type Aleksandrov–Fenchel inequality and Orlicz–Minkowski inequality but also Orlicz–Aleksandrov–Fenchel inequality for Orlicz mixed intersection bodies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical Notes
Mathematical Notes 数学-数学
CiteScore
0.90
自引率
16.70%
发文量
179
审稿时长
24 months
期刊介绍: Mathematical Notes is a journal that publishes research papers and review articles in modern algebra, geometry and number theory, functional analysis, logic, set and measure theory, topology, probability and stochastics, differential and noncommutative geometry, operator and group theory, asymptotic and approximation methods, mathematical finance, linear and nonlinear equations, ergodic and spectral theory, operator algebras, and other related theoretical fields. It also presents rigorous results in mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信