{"title":"网络气体动力学等温半线性欧拉方程的最优边界控制","authors":"Marcelo Bongarti, Michael Hintermüller","doi":"10.1007/s00245-023-10088-0","DOIUrl":null,"url":null,"abstract":"<div><p>The analysis and boundary optimal control of the nonlinear transport of gas on a network of pipelines is considered. The evolution of the gas distribution on a given pipe is modeled by an isothermal semilinear compressible Euler system in one space dimension. On the network, solutions satisfying (at nodes) the Kirchhoff flux continuity conditions are shown to exist in a neighborhood of an equilibrium state. The associated nonlinear optimization problem then aims at steering such dynamics to a given target distribution by means of suitable (network) boundary controls while keeping the distribution within given (state) constraints. The existence of local optimal controls is established and a corresponding Karush–Kuhn–Tucker (KKT) stationarity system with an almost surely non-singular Lagrange multiplier is derived.</p></div>","PeriodicalId":55566,"journal":{"name":"Applied Mathematics and Optimization","volume":"89 2","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00245-023-10088-0.pdf","citationCount":"0","resultStr":"{\"title\":\"Optimal Boundary Control of the Isothermal Semilinear Euler Equation for Gas Dynamics on a Network\",\"authors\":\"Marcelo Bongarti, Michael Hintermüller\",\"doi\":\"10.1007/s00245-023-10088-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The analysis and boundary optimal control of the nonlinear transport of gas on a network of pipelines is considered. The evolution of the gas distribution on a given pipe is modeled by an isothermal semilinear compressible Euler system in one space dimension. On the network, solutions satisfying (at nodes) the Kirchhoff flux continuity conditions are shown to exist in a neighborhood of an equilibrium state. The associated nonlinear optimization problem then aims at steering such dynamics to a given target distribution by means of suitable (network) boundary controls while keeping the distribution within given (state) constraints. The existence of local optimal controls is established and a corresponding Karush–Kuhn–Tucker (KKT) stationarity system with an almost surely non-singular Lagrange multiplier is derived.</p></div>\",\"PeriodicalId\":55566,\"journal\":{\"name\":\"Applied Mathematics and Optimization\",\"volume\":\"89 2\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s00245-023-10088-0.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics and Optimization\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00245-023-10088-0\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics and Optimization","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00245-023-10088-0","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Optimal Boundary Control of the Isothermal Semilinear Euler Equation for Gas Dynamics on a Network
The analysis and boundary optimal control of the nonlinear transport of gas on a network of pipelines is considered. The evolution of the gas distribution on a given pipe is modeled by an isothermal semilinear compressible Euler system in one space dimension. On the network, solutions satisfying (at nodes) the Kirchhoff flux continuity conditions are shown to exist in a neighborhood of an equilibrium state. The associated nonlinear optimization problem then aims at steering such dynamics to a given target distribution by means of suitable (network) boundary controls while keeping the distribution within given (state) constraints. The existence of local optimal controls is established and a corresponding Karush–Kuhn–Tucker (KKT) stationarity system with an almost surely non-singular Lagrange multiplier is derived.
期刊介绍:
The Applied Mathematics and Optimization Journal covers a broad range of mathematical methods in particular those that bridge with optimization and have some connection with applications. Core topics include calculus of variations, partial differential equations, stochastic control, optimization of deterministic or stochastic systems in discrete or continuous time, homogenization, control theory, mean field games, dynamic games and optimal transport. Algorithmic, data analytic, machine learning and numerical methods which support the modeling and analysis of optimization problems are encouraged. Of great interest are papers which show some novel idea in either the theory or model which include some connection with potential applications in science and engineering.