Ziyang Lyu, Daniel Ahfock, Ryan Thompson, Geoffrey J. McLachlan
{"title":"用 R 语言建立具有缺失数据机制的半监督高斯混合物模型","authors":"Ziyang Lyu, Daniel Ahfock, Ryan Thompson, Geoffrey J. McLachlan","doi":"10.1111/anzs.12413","DOIUrl":null,"url":null,"abstract":"<p>Semi-supervised learning is being extensively applied to estimate classifiers from training data in which not all the labels of the feature vectors are available. We present <span>gmmsslm</span>, an <span>R</span> package for estimating the Bayes' classifier from such partially classified data in the case where the feature vector has a multivariate Gaussian (normal) distribution in each of the pre-defined classes. Our package implements a recently proposed Gaussian mixture modelling framework that incorporates a missingness mechanism for the missing labels in which the probability of a missing label is represented via a logistic model with covariates that depend on the entropy of the feature vector. Under this framework, it has been shown that the accuracy of the Bayes' classifier formed from the Gaussian mixture model fitted to the partially classified training data can even have lower error rate than if it were estimated from the sample completely classified. This result was established in the particular case of two Gaussian classes with a common covariance matrix. Here we focus on the effective implementation of an algorithm for multiple Gaussian classes with arbitrary covariance matrices. A strategy for initialising the algorithm is discussed and illustrated. The new package is demonstrated on some real data.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 2","pages":"146-162"},"PeriodicalIF":0.8000,"publicationDate":"2024-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12413","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised Gaussian mixture modelling with a missing-data mechanism in R\",\"authors\":\"Ziyang Lyu, Daniel Ahfock, Ryan Thompson, Geoffrey J. McLachlan\",\"doi\":\"10.1111/anzs.12413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Semi-supervised learning is being extensively applied to estimate classifiers from training data in which not all the labels of the feature vectors are available. We present <span>gmmsslm</span>, an <span>R</span> package for estimating the Bayes' classifier from such partially classified data in the case where the feature vector has a multivariate Gaussian (normal) distribution in each of the pre-defined classes. Our package implements a recently proposed Gaussian mixture modelling framework that incorporates a missingness mechanism for the missing labels in which the probability of a missing label is represented via a logistic model with covariates that depend on the entropy of the feature vector. Under this framework, it has been shown that the accuracy of the Bayes' classifier formed from the Gaussian mixture model fitted to the partially classified training data can even have lower error rate than if it were estimated from the sample completely classified. This result was established in the particular case of two Gaussian classes with a common covariance matrix. Here we focus on the effective implementation of an algorithm for multiple Gaussian classes with arbitrary covariance matrices. A strategy for initialising the algorithm is discussed and illustrated. The new package is demonstrated on some real data.</p>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"66 2\",\"pages\":\"146-162\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-05-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12413\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12413\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12413","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0
摘要
摘要半监督学习被广泛应用于从并非所有特征向量标签都可用的训练数据中估计分类器。我们介绍的 gmmsslm 是一个 R 软件包,用于在特征向量在每个预定义类别中都具有多元高斯(正态)分布的情况下,从此类部分分类数据中估计贝叶斯分类器。我们的软件包实现了最近提出的高斯混合建模框架,该框架纳入了缺失标签的缺失机制,其中缺失标签的概率通过一个逻辑模型来表示,该模型的协变量取决于特征向量的熵。在这一框架下,贝叶斯分类器的准确率甚至低于根据完全分类样本估计的准确率。这一结果是在两个具有共同协方差矩阵的高斯类的特殊情况下得出的。在此,我们将重点讨论如何有效地实现具有任意协方差矩阵的多个高斯类的算法。我们讨论并说明了初始化算法的策略。新软件包在一些真实数据上进行了演示。
Semi-supervised Gaussian mixture modelling with a missing-data mechanism in R
Semi-supervised learning is being extensively applied to estimate classifiers from training data in which not all the labels of the feature vectors are available. We present gmmsslm, an R package for estimating the Bayes' classifier from such partially classified data in the case where the feature vector has a multivariate Gaussian (normal) distribution in each of the pre-defined classes. Our package implements a recently proposed Gaussian mixture modelling framework that incorporates a missingness mechanism for the missing labels in which the probability of a missing label is represented via a logistic model with covariates that depend on the entropy of the feature vector. Under this framework, it has been shown that the accuracy of the Bayes' classifier formed from the Gaussian mixture model fitted to the partially classified training data can even have lower error rate than if it were estimated from the sample completely classified. This result was established in the particular case of two Gaussian classes with a common covariance matrix. Here we focus on the effective implementation of an algorithm for multiple Gaussian classes with arbitrary covariance matrices. A strategy for initialising the algorithm is discussed and illustrated. The new package is demonstrated on some real data.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.