具有运动学约束条件的平滑 PSO-IPF 导航器新设计

Mahsa Mohaghegh, Hedieh Jafarpourdavatgar, Samaneh Alsadat Saeedinia
{"title":"具有运动学约束条件的平滑 PSO-IPF 导航器新设计","authors":"Mahsa Mohaghegh, Hedieh Jafarpourdavatgar, Samaneh Alsadat Saeedinia","doi":"arxiv-2405.01794","DOIUrl":null,"url":null,"abstract":"Robotic applications across industries demand advanced navigation for safe\nand smooth movement. Smooth path planning is crucial for mobile robots to\nensure stable and efficient navigation, as it minimizes jerky movements and\nenhances overall performance Achieving this requires smooth collision-free\npaths. Partial Swarm Optimization (PSO) and Potential Field (PF) are notable\npath-planning techniques, however, they may struggle to produce smooth paths\ndue to their inherent algorithms, potentially leading to suboptimal robot\nmotion and increased energy consumption. In addition, while PSO efficiently\nexplores solution spaces, it generates long paths and has limited global\nsearch. On the contrary, PF methods offer concise paths but struggle with\ndistant targets or obstacles. To address this, we propose Smoothed Partial\nSwarm Optimization with Improved Potential Field (SPSO-IPF), combining both\napproaches and it is capable of generating a smooth and safe path. Our research\ndemonstrates SPSO-IPF's superiority, proving its effectiveness in static and\ndynamic environments compared to a mere PSO or a mere PF approach.","PeriodicalId":501062,"journal":{"name":"arXiv - CS - Systems and Control","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New design of smooth PSO-IPF navigator with kinematic constraints\",\"authors\":\"Mahsa Mohaghegh, Hedieh Jafarpourdavatgar, Samaneh Alsadat Saeedinia\",\"doi\":\"arxiv-2405.01794\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robotic applications across industries demand advanced navigation for safe\\nand smooth movement. Smooth path planning is crucial for mobile robots to\\nensure stable and efficient navigation, as it minimizes jerky movements and\\nenhances overall performance Achieving this requires smooth collision-free\\npaths. Partial Swarm Optimization (PSO) and Potential Field (PF) are notable\\npath-planning techniques, however, they may struggle to produce smooth paths\\ndue to their inherent algorithms, potentially leading to suboptimal robot\\nmotion and increased energy consumption. In addition, while PSO efficiently\\nexplores solution spaces, it generates long paths and has limited global\\nsearch. On the contrary, PF methods offer concise paths but struggle with\\ndistant targets or obstacles. To address this, we propose Smoothed Partial\\nSwarm Optimization with Improved Potential Field (SPSO-IPF), combining both\\napproaches and it is capable of generating a smooth and safe path. Our research\\ndemonstrates SPSO-IPF's superiority, proving its effectiveness in static and\\ndynamic environments compared to a mere PSO or a mere PF approach.\",\"PeriodicalId\":501062,\"journal\":{\"name\":\"arXiv - CS - Systems and Control\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Systems and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.01794\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.01794","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

各行各业的机器人应用都需要先进的导航技术来实现安全平稳的移动。平滑的路径规划对移动机器人确保稳定高效的导航至关重要,因为它能最大限度地减少生涩的运动,提高整体性能。部分群优化(PSO)和势场(PF)是值得注意的路径规划技术,但由于其固有的算法,它们可能难以生成平滑的路径,从而可能导致次优的机器人运动并增加能耗。此外,虽然 PSO 能有效地探索解空间,但它产生的路径较长,而且全局搜索能力有限。相反,PF 方法能提供简洁的路径,但却很难找到目标或障碍物。针对这一问题,我们提出了改进势场的平滑部分群优化(SPSO-IPF),它结合了这两种方法,能够生成平滑、安全的路径。与单纯的 PSO 或单纯的 PF 方法相比,我们的研究证明了 SPSO-IPF 的优越性,证明了它在静态和动态环境中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
New design of smooth PSO-IPF navigator with kinematic constraints
Robotic applications across industries demand advanced navigation for safe and smooth movement. Smooth path planning is crucial for mobile robots to ensure stable and efficient navigation, as it minimizes jerky movements and enhances overall performance Achieving this requires smooth collision-free paths. Partial Swarm Optimization (PSO) and Potential Field (PF) are notable path-planning techniques, however, they may struggle to produce smooth paths due to their inherent algorithms, potentially leading to suboptimal robot motion and increased energy consumption. In addition, while PSO efficiently explores solution spaces, it generates long paths and has limited global search. On the contrary, PF methods offer concise paths but struggle with distant targets or obstacles. To address this, we propose Smoothed Partial Swarm Optimization with Improved Potential Field (SPSO-IPF), combining both approaches and it is capable of generating a smooth and safe path. Our research demonstrates SPSO-IPF's superiority, proving its effectiveness in static and dynamic environments compared to a mere PSO or a mere PF approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信