周期管状结构中的相变

IF 1.9 4区 数学 Q1 MATHEMATICS, APPLIED
Alexander V. Kiselev, Kirill Ryadovkin
{"title":"周期管状结构中的相变","authors":"Alexander V. Kiselev, Kirill Ryadovkin","doi":"10.1137/23m157274x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 890-914, June 2024. <br/> Abstract. We consider an [math]-periodic ([math]) tubular structure, modeled as a magnetic Laplacian on a metric graph, which is periodic along a single axis. We show that the corresponding Hamiltonian admits norm-resolvent convergence to an ODE on [math] which is fourth order at a discrete set of values of the magnetic potential (critical points) and second order generically. In a vicinity of critical points we establish a mixed-order asymptotics. The rate of convergence is also estimated. This represents a physically viable model of a phase transition as the strength of the (constant) magnetic field increases.","PeriodicalId":51149,"journal":{"name":"SIAM Journal on Applied Mathematics","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phase Transition in a Periodic Tubular Structure\",\"authors\":\"Alexander V. Kiselev, Kirill Ryadovkin\",\"doi\":\"10.1137/23m157274x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 890-914, June 2024. <br/> Abstract. We consider an [math]-periodic ([math]) tubular structure, modeled as a magnetic Laplacian on a metric graph, which is periodic along a single axis. We show that the corresponding Hamiltonian admits norm-resolvent convergence to an ODE on [math] which is fourth order at a discrete set of values of the magnetic potential (critical points) and second order generically. In a vicinity of critical points we establish a mixed-order asymptotics. The rate of convergence is also estimated. This represents a physically viable model of a phase transition as the strength of the (constant) magnetic field increases.\",\"PeriodicalId\":51149,\"journal\":{\"name\":\"SIAM Journal on Applied Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-05-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m157274x\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m157274x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 应用数学杂志》第 84 卷第 3 期第 890-914 页,2024 年 6 月。 摘要。我们考虑了一个[math]-周期([math])管状结构,它被建模为一个度量图上的磁拉普拉奇,它沿单轴是周期性的。我们证明,相应的哈密顿方程可以收敛到[math]上的一个 ODE 的规范残差,在磁势的一组离散值(临界点)上是四阶的,而在一般情况下是二阶的。在临界点附近,我们建立了混合阶渐近线。我们还估算了收敛速率。这代表了一个随着(恒定)磁场强度增加而发生相变的物理可行模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phase Transition in a Periodic Tubular Structure
SIAM Journal on Applied Mathematics, Volume 84, Issue 3, Page 890-914, June 2024.
Abstract. We consider an [math]-periodic ([math]) tubular structure, modeled as a magnetic Laplacian on a metric graph, which is periodic along a single axis. We show that the corresponding Hamiltonian admits norm-resolvent convergence to an ODE on [math] which is fourth order at a discrete set of values of the magnetic potential (critical points) and second order generically. In a vicinity of critical points we establish a mixed-order asymptotics. The rate of convergence is also estimated. This represents a physically viable model of a phase transition as the strength of the (constant) magnetic field increases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.60
自引率
0.00%
发文量
79
审稿时长
12 months
期刊介绍: SIAM Journal on Applied Mathematics (SIAP) is an interdisciplinary journal containing research articles that treat scientific problems using methods that are of mathematical interest. Appropriate subject areas include the physical, engineering, financial, and life sciences. Examples are problems in fluid mechanics, including reaction-diffusion problems, sedimentation, combustion, and transport theory; solid mechanics; elasticity; electromagnetic theory and optics; materials science; mathematical biology, including population dynamics, biomechanics, and physiology; linear and nonlinear wave propagation, including scattering theory and wave propagation in random media; inverse problems; nonlinear dynamics; and stochastic processes, including queueing theory. Mathematical techniques of interest include asymptotic methods, bifurcation theory, dynamical systems theory, complex network theory, computational methods, and probabilistic and statistical methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信