{"title":"不确定性的命题类型理论","authors":"Víctor Aranda, Manuel Martins, María Manzano","doi":"10.1007/s11225-024-10099-0","DOIUrl":null,"url":null,"abstract":"<p>The aim of this paper is to define a partial Propositional Type Theory. Our system is partial in a double sense: the hierarchy of (propositional) types contains partial functions and some expressions of the language, including formulas, may be undefined. The specific interpretation we give to the undefined value is that of Kleene’s strong logic of indeterminacy. We present a semantics for the new system and prove that every element of any domain of the hierarchy has a name in the object language. Finally, we provide a proof system and a (constructive) proof of completeness.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"40 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Propositional Type Theory of Indeterminacy\",\"authors\":\"Víctor Aranda, Manuel Martins, María Manzano\",\"doi\":\"10.1007/s11225-024-10099-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The aim of this paper is to define a partial Propositional Type Theory. Our system is partial in a double sense: the hierarchy of (propositional) types contains partial functions and some expressions of the language, including formulas, may be undefined. The specific interpretation we give to the undefined value is that of Kleene’s strong logic of indeterminacy. We present a semantics for the new system and prove that every element of any domain of the hierarchy has a name in the object language. Finally, we provide a proof system and a (constructive) proof of completeness.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-05-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10099-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10099-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
The aim of this paper is to define a partial Propositional Type Theory. Our system is partial in a double sense: the hierarchy of (propositional) types contains partial functions and some expressions of the language, including formulas, may be undefined. The specific interpretation we give to the undefined value is that of Kleene’s strong logic of indeterminacy. We present a semantics for the new system and prove that every element of any domain of the hierarchy has a name in the object language. Finally, we provide a proof system and a (constructive) proof of completeness.
期刊介绍:
The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.